Active Vibration Control of a High-Speed Flexible Robot Using Variable Structure Control

Author(s):  
Junfeng Hu ◽  
Pei Li ◽  
Xiangfu Cui
2013 ◽  
Vol 20 (4) ◽  
pp. 693-709 ◽  
Author(s):  
R.B. He ◽  
S.J. Zheng ◽  
H.T. Wang

Photostrictive actuator, which can produce photodeformation strains under the activation of ultraviolet lights, is a new promising non-contact photoactuation technique for active vibration control of flexible structures. Generally, the membrane control action plays a major role in vibration control of flexible thin shell structures. However, it is unfortunate that the existing photostrictive actuator configuration can not induce negative membrane control forces. In this paper, a novel multi-layer actuator configuration is first presented to remedy this deficiency, followed by presenting the photostrictive/shell coupling equations of thin cylindrical shells laminated with the proposed multi-layer actuator configuration. Moreover, considering the time-variant and nonlinear dynamic characteristics of photostrictive actuator, variable structure self-adjusting parameter fuzzy active controller is explored to overcome disadvantages of conventional control schemes, in which off-line fuzzy control table is adopted. The optimal switching surface is derived to increase the range of sliding mode to facilitate vibration suppression. A continuous function is used to replace the sign function for reducing the variable structure control chattering. Finally, two case studies are carried out to evaluate the effectiveness of the proposed actuator configuration and the control scheme. Numerical simulation results demonstrate that the proposed actuator configuration is effective in shell actuation and control. It is also suggested that the proposed control strategy could give better control responses than the proportional velocity feedback.


2019 ◽  
Vol 24 (3) ◽  
pp. 608-615 ◽  
Author(s):  
Miroslav Pawlenka ◽  
Miroslav Mahdal ◽  
Jiri Tuma ◽  
Adam Burecek

This study concerns the active vibration control of journal bearings, which are also known as sliding bearings. The control system contains a non-rotating loose bushing, the position of which is controlled by piezoelectric actuators. For governing the respective orthogonal direction of the journal motion, the control algorithm realizes a proportional controller in parallel with a bandpass filter of the IIR type. The bandpass filter is of the second order and its centre frequency is self-tuned to be the same as the whirl frequency that results from the instability of the bearing journal due to the oil film. The objective of active vibration control is to achieve the highest operational speed of the journal bearing at which the motion of the rotor is stable. The control algorithm for the active vibration control is implemented in Simulink and realized in a dSPACE control system.


2002 ◽  
Vol 2002.77 (0) ◽  
pp. _12-23_-_12-24_
Author(s):  
Takenori KUBO ◽  
Hiroshi MATSUHISA ◽  
Kenji UTSUNOMIYA

Author(s):  
Zhang Xianmin ◽  
Song Li ◽  
Liu Jike

Abstract In this paper, a mathematical model for flexible robot manipulators with smart links featuring piezoelectric films is developed in conjunction with the finite element method. The dynamics of piezoelectric actuators and strain gage sensors bonded on the flexible links are presented for beam model. Theory and measures of active vibration control for flexible manipulators are studied based on the modal and modern control theory, and the correspondent optimal control scheme is proposed. The robust control low is formulated based on the modified independent modal control method and the Linear Quadratic theory. The computational method for the actual control moments and the control voltages are also presented.


2011 ◽  
Vol 211-212 ◽  
pp. 1061-1065
Author(s):  
Qiang Hong Zeng ◽  
Shi Jian Zhu ◽  
Jing Jun Lou ◽  
Shui Qing Xie

The active vibration control system are described in this paper, and the controller was designed for the active control system, the controller is based on ARM Cortex M3 microcontroller core, ICP series acceleration sensor is use for signal acquisition module, the A / D converter module was designed based on ADS1158 chip, the D/ A converter module was designed based on DAC8564 chip. The controller has the characteristics of high speed and versatility.


Sign in / Sign up

Export Citation Format

Share Document