510 Heat Extraction Characteristics of Spiral-Tube Downhole Heat Exchanger

2010 ◽  
Vol 2010.46 (0) ◽  
pp. 157-158
Author(s):  
Hikaru SAKUDAI ◽  
Hirotake AKATA ◽  
Yoshimi KOMATSU ◽  
Makoto TAGO
2012 ◽  
Vol 2012.48 (0) ◽  
pp. 24-25
Author(s):  
Takashi ISE ◽  
Makoto TAGO ◽  
Yoshimi KOMATSU ◽  
Hirotake AKATA

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1893
Author(s):  
Kwonye Kim ◽  
Jaemin Kim ◽  
Yujin Nam ◽  
Euyjoon Lee ◽  
Eunchul Kang ◽  
...  

A ground source heat pump system is a high-performance technology used for maintaining a stable underground temperature all year-round. However, the high costs for installation, such as for boring and drilling, is a drawback that prevents the system to be rapidly introduced into the market. This study proposes a modular ground heat exchanger (GHX) that can compensate for the disadvantages (such as high-boring/drilling costs) of the conventional vertical GHX. Through a real-scale experiment, a modular GHX was manufactured and buried at a depth of 4 m below ground level; the heat exchange rate and the change in underground temperatures during the GHX operation were tracked and calculated. The average heat exchanges rate was 78.98 W/m and 88.83 W/m during heating and cooling periods, respectively; the underground temperature decreased by 1.2 °C during heat extraction and increased by 4.4 °C during heat emission, with the heat pump (HP) working. The study showed that the modular GHX is a cost-effective alternative to the vertical GHX; further research is needed for application to actual small buildings.


2021 ◽  
Vol 169 ◽  
pp. 738-751
Author(s):  
Ji Li ◽  
Wei Xu ◽  
Jianfeng Li ◽  
Shuai Huang ◽  
Zhao Li ◽  
...  

2021 ◽  
Author(s):  
Giorgia Dalla Santa ◽  
Simonetta Cola ◽  
Antonio Galgaro

<p>In closed-loop Ground Source Heat Pump system, the circulation of a heat-carrier fluid into the heat exchanger provides the thermal exchange with the underground.</p><p>In order to improve the heat extraction from the ground, the fluid temperature is often lowered down to subzero temperatures; as a consequence, the thermal alteration induced in the ground is more intense and can cause freezing processes in the surroundings. In sediments with significant clay fraction, the inner structure and the pore size distribution are irreversibly altered by freezing-thawing cycles.</p><p>A wide laboratory program has been performed in order to measure the induced deformations and the permeability variations under different conditions of mechanical loads/depth [1], interstitial water salinity [2] and soil plasticity [3]. In addition, vertical deformations and permeability variations induced by freeze-thaw cycles have been measured also in Over-Consolidated silty clays at different OCR [4].</p><p>The results suggest that, despite the induced frozen condition is quite confined close to the borehole [5], in Normal-Consolidated silty clay layers the freezing-thawing-cycles induce an irreversible settlement up to 16%, gathered cycle-after cycle depending on sediment plasticity, pore fluid salinity and applied load. In addition, despite the overall contraction of the soil, the vertical hydraulic conductivity may increase by about 8 times due to a remarkable modification of the soil fabric with increases in pore size, pores connectivity and orientation [6].</p><p>The OC silty-clays show an opposite behavior. Experimental results point out that, in case of OC deposits, higher the OCR lower the freeze-thaw induced settlement. In case of OCR > 15, the settlement turns to a slight expansion. Conversely, the observed augment in vertical permeability increases with the OCR degree [4].</p><p>These occurrences are significant and irreversible and could affect the functionality of the system as well as lead to environmental effects such as local settlements, negative friction on the borehole heat exchangers or interconnection among aquifers in the probe surroundings.</p><ul><li>[1]. Dalla Santa G*, Galgaro A, Tateo F, Cola S (2016). Modified compressibility of cohesive sediments induced by thermal anomalies due to a borehole heat exchanger. <strong>Engineering Geology</strong> 202, 143-152.</li> <li>[2]. Dalla Santa G*, Galgaro A, Tateo F, Cola S (2016). Induced thermal compaction in cohesive sediments around a borehole heat exchanger: laboratory tests on the effect of pore water salinity. <strong>Environmental Earth Sciences</strong>, 75(3), 1-11.</li> <li>[3]. Cola S, Dalla Santa G, Galgaro A (2020). Geotechnical hazards caused by freezing-thawing processes induced by borehole heat exchangers. <strong>Lecture Notes in Civil Engineering</strong>, 40, pp. 529–536</li> <li>[4]. Dalla Santa G, Cola S, Galgaro A (2021). Deformation and Vertical Permeability Variations Induced by Freeze-Thaw Cycles in Over-Consolidated Silty Clays. <strong>Challenges and Innovations in Geomechanics</strong>, 117</li> <li>[5]. Dalla Santa G*, Farina Z, Anbergen H, Rühaak W, Galgaro A (2019). A Comparative Study on the Relevance of Computing Freeze-Thaw Effects for Borehole Heat Exchanger Modelling. <strong>Geothermics</strong> 79, 164-175.</li> <li>[6]. Dalla Santa G*, Cola S, Secco M, Tateo F, Sassi R, Galgaro A (2019). Multiscale analysis of freeze-thaw effects induced by ground heat exchangers on permeability of silty-clays. <strong>Geotechnique</strong> 2019, 69(2).</li> </ul>


2020 ◽  
Vol 205 ◽  
pp. 05024
Author(s):  
Mithun Mandal ◽  
Ramakrishna Bag

Geothermal energy is one of the potential energy resources to meet future energy demand keeping environmental pollution under control. This paper presents the use of geothermal energy for space heating from energy pile. An energy pile with a single U tube heat exchanger of polyethylene (PE) pipe was modeled in this study. The effect of pile and heat exchanger properties on the total heat extraction was studied by the finite element analysis using COMSOL Multiphysics. The 3D model was developed and validated based on the literature reported results of an experimental thermal performance of a borehole equipped with a single and double U tube heat exchanger. Tetrahedral elements were considered for simulation of a 3D model. The model of a single energy pile of certain dimensions with different soil layers was considered, each soil layers were associated with different temperature. The effect of various parameters such as the length of concrete pile, the diameter of concrete pile, the thickness of U pipe, the inner diameter of U pipe and velocity of fluid inside the U pipe on amount of heat extraction was studied for an energy pile equipped with a single U tube heat exchanger. It was observed that the most influential parameters in increasing the outlet temperature of the heat exchanger loop are the diameter of the concrete pile, the inner diameter of U pipe and the velocity of fluid inside the U pipe.


2012 ◽  
Vol 58 (No. 2) ◽  
pp. 57-65 ◽  
Author(s):  
R. Adamovský ◽  
L. Mašek ◽  
P. Neuberger

The goal of the article is to analyze the distribution and changes of temperatures in boreholes with the rock mass/fluid tubular heat exchangers used as an energy source for the heat pump. It also aims at documenting changes of temperatures in the rock mass during stagnation and heat extraction, and to compare the temperatures in the active and referential borehole. The testing results showed that temperatures of the rock mass reached a minimal value of 1.3°C at depths of 9 m and 20 m with maximal heat extraction corresponding to minimal air temperatures. The temperatures of the rock mass increased near the end of the heating season to values which correspond to the initial values. The temperature differences of the rock mass between the reference borehole and active boreholes increased to up to 10.5 K during the heating season. However, the temperature differences at the end of the heating season between the reference and active boreholes dropped back to 0.5–1.1 K.  


Sign in / Sign up

Export Citation Format

Share Document