deep borehole
Recently Published Documents





Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 121
Jiaqi Zhang ◽  
Xinli Lu ◽  
Wei Zhang ◽  
Jiali Liu ◽  
Wen Yue ◽  

With the changing world energy structure, the development of renewable energy sources is gradually accelerating. Among them, close attention has been given to geothermal energy because of its abundant resources and supply stability. In this article, a deep borehole heat exchanger (DBHE) is coupled with a heat pump system to calculate the heat supply and daily electricity consumption of the system. To make better use of the peaks and valleys in electricity prices, the following three daily operating modes were studied: 24-h operation (Mode 1), 8-h operation plus 16-h non-operation (Mode 2), and two cycles of 4-h operation and 8-h non-operation (Mode 3). Simulation results show that scheduled non-continuous operation can effectively improve the outlet temperature of the heat extraction fluid circulating in the DBHE. The heat extraction rates of Mode 1 is 190.9 kW for mass flowrate of 9 kg/s; in Mode 2 and Mode 3 cases, the rates change to 304.7 kW and 293.0 kW, respectively. The daily operational electricity cost of Mode 1 is the greatest because of 24-h operation; due to scheduled non-continuous operation, the daily operational electricity cost of Mode 3 is only about 66% of that of Mode 2. After an 8-month period without heating, the formation-temperature can be restored within 4 °C of its original state; 90% recovery of the formation-temperature can be achieved by the end of the second month of the non-operation season.

2022 ◽  
Kaiu Piipponen ◽  
Annu Martinkauppi ◽  
Sami Vallin ◽  
Teppo Arola ◽  
Nina Leppäharju ◽  

Abstract The energy sector is undergoing a fundamental transformation, with significant investment in low-carbon technologies to replace fossil-based systems. In densely populated urban areas, deep boreholes offer an alternative over shallow geothermal systems, which demand extensive surface area to attain large-scale heat production. This paper presents numerical calculations of the thermal energy that can be extracted from the medium-deep borehole heat exchangers of depths ranging from 600-3000 m. We applied the thermogeological parameters of three locations across Finland and tested two types of coaxial borehole heat exchangers to understand better the variables that affect heat production in low permeability crystalline rocks. For each depth, location, and heat collector type, we used a range of fluid flow rates to examine the correlation between thermal energy production and resulting outlet temperature. Our results indicate a trade-off between thermal energy production and outlet fluid temperature depending on the fluid flow rate, and that the vacuum-insulated tubing outperforms high-density polyethylene pipe in energy and temperature production. In addition, the results suggest that the local thermogeological factors impact heat production. Maximum energy production from a 600-m-deep well achieved 170 MWh/a, increasing to 330 MWh/a from a 1000-m-deep well, 980 MWh/a from a 2-km-deep well, and up to 1880 MWh/a from a 3-km-deep well. We demonstrate that understanding the interplay of the local geology, heat exchanger materials, and fluid circulation rates is necessary to maximize the potential of medium-deep geothermal boreholes as a reliable long-term baseload energy source.

2021 ◽  
Vol 1 ◽  
pp. 263-264
Dirk Mallants ◽  
John Phalen ◽  
Hef Griffiths

Abstract. Around the world, deep borehole disposal is being evaluated for intermediate-level waste (ILW), high-level waste (HLW), spent nuclear fuel (SNF), separated plutonium waste and some very high specific activity fission product waste. In Australia, long-lived ILW from research reactors and radiopharmaceutical production represents the principal waste stream that requires deep geologic disposal. Whilst the Australian government has not yet made a decision on its preferred strategy for ILW disposal, deep borehole disposal of small volumes of ILW would be a more cost-effective and modular solution compared to a conventional geologic disposal facility (GDF). CSIRO, ANSTO and SANDIA have created an international partnership to execute a full-scale borehole research, development and demonstration (RD&D) project in Australia. The project will demonstrate the technical feasibility of the long-term safety of borehole disposal in deep geological formations. The execution of this project could also demonstrate options for nuclear waste disposal that would reduce proliferation risks, potentially up to the termination of compliance with international safeguards requirements. The RD&D includes demonstration of surface handling and waste/seal emplacement capabilities, basic research on foundational science areas, and full-scale field testing in both a deep characterization borehole and a larger-diameter (0.7 m or 27.5 inch) 2000 m deep demonstration borehole. The multi-barrier system designed for such a deep disposal borehole concept places much less reliance on engineered barriers at the disposal zone to achieve safety as compared to a conventional GDF. It rather relies on geological features for waste containment. The concept being explored uses disposal containers with primary waste packages, such as vitrified waste canisters, inside; to be both cost effective and fit for purpose, such a container could have a mild steel-based structural component with copper coating. A critical review of six coating technologies showed that cold spray has the greatest advantages, such as minimal porosity and compressive residual stress. The RD&D has delivered novel enabling tools that assist with site screening, borehole design and post-closure safety assessments. For instance, an automated geological fault mapping and meshing tool was developed that assists with ranking the suitability of potential disposal sites based on proximity to faults. New codes were developed for better representation of fault zones in 2D/3D numerical flow and transport models, while also being more efficient to execute. Post-closure safety assessments tested the sensitivity of long-term safety with respect to disposal depth, rock permeability and sorption. Heat transport calculations explored the sensitivity of temperature evolution within the borehole to parameters such as heat load, borehole depth, geothermal gradients and rock thermal conductivity. For verification of host rock tightness while also demonstrating the absence of recent groundwater, a new noble gas analytical facility has been established for measuring rare noble gases in mineral fluid inclusions as indicators of very old pore fluids.

Geothermics ◽  
2021 ◽  
Vol 96 ◽  
pp. 102220
Wenke Zhang ◽  
Wenjing Li ◽  
Bjørn R Sørensen ◽  
Ping Cui ◽  
Yi Man ◽  

Sign in / Sign up

Export Citation Format

Share Document