803 Navigation and Path-Planning of Mobile Robots with Real-Time Map-Building

2007 ◽  
Vol 2007 (0) ◽  
pp. 211-212
Author(s):  
Atsushi FUJIMORI
2004 ◽  
Vol 11 (3) ◽  
pp. 281-288
Author(s):  
Atsushi Fujimori ◽  
Takafumi Murakoshi ◽  
Yoshinao Ogawa

2012 ◽  
Vol 8 (10) ◽  
pp. 567959 ◽  
Author(s):  
Mingzhong Yan ◽  
Daqi Zhu ◽  
Simon X. Yang

A real-time map-building system is proposed for an autonomous underwater vehicle (AUV) to build a map of an unknown underwater environment. The system, using the AUV's onboard sensor information, includes a neurodynamics model proposed for complete coverage path planning and an evidence theoretic method proposed for map building. The complete coverage of the environment guarantees that the AUV can acquire adequate environment information. The evidence theory is used to handle the noise and uncertainty of the sensor data. The AUV dynamically plans its path with obstacle avoidance through the landscape of neural activity. Concurrently, real-time sensor data are “fused” into a two-dimensional (2D) occupancy grid map of the environment using evidence inference rule based on the Dempster-Shafer theory. Simulation results show a good quality of map-building capabilities and path-planning behaviors of the AUV.


2009 ◽  
Vol 29 (8) ◽  
pp. 2116-2119
Author(s):  
Hui ZHANG ◽  
Ying QU ◽  
Dan HAI ◽  
Yong LI ◽  
Long-wei CHEN

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Chittaranjan Paital ◽  
Saroj Kumar ◽  
Manoj Kumar Muni ◽  
Dayal R. Parhi ◽  
Prasant Ranjan Dhal

PurposeSmooth and autonomous navigation of mobile robot in a cluttered environment is the main purpose of proposed technique. That includes localization and path planning of mobile robot. These are important aspects of the mobile robot during autonomous navigation in any workspace. Navigation of mobile robots includes reaching the target from the start point by avoiding obstacles in a static or dynamic environment. Several techniques have already been proposed by the researchers concerning navigational problems of the mobile robot still no one confirms the navigating path is optimal.Design/methodology/approachTherefore, the modified grey wolf optimization (GWO) controller is designed for autonomous navigation, which is one of the intelligent techniques for autonomous navigation of wheeled mobile robot (WMR). GWO is a nature-inspired algorithm, which mainly mimics the social hierarchy and hunting behavior of wolf in nature. It is modified to define the optimal positions and better control over the robot. The motion from the source to target in the highly cluttered environment by negotiating obstacles. The controller is authenticated by the approach of V-REP simulation software platform coupled with real-time experiment in the laboratory by using Khepera-III robot.FindingsDuring experiments, it is observed that the proposed technique is much efficient in motion control and path planning as the robot reaches its target position without any collision during its movement. Further the simulation through V-REP and real-time experimental results are recorded and compared against each corresponding results, and it can be seen that the results have good agreement as the deviation in the results is approximately 5% which is an acceptable range of deviation in motion planning. Both the results such as path length and time taken to reach the target is recorded and shown in respective tables.Originality/valueAfter literature survey, it may be said that most of the approach is implemented on either mathematical convergence or in mobile robot, but real-time experimental authentication is not obtained. With a lack of clear evidence regarding use of MGWO (modified grey wolf optimization) controller for navigation of mobile robots in both the environment, such as in simulation platform and real-time experimental platforms, this work would serve as a guiding link for use of similar approaches in other forms of robots.


Sign in / Sign up

Export Citation Format

Share Document