local path planning
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 71)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Cai Wenlin ◽  
Zihui Zhu ◽  
Jianhua Li ◽  
Jiaqi Liu ◽  
Chunxi Wang

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6642
Author(s):  
Rafal Szczepanski ◽  
Artur Bereit ◽  
Tomasz Tarczewski

Mobile robots in industry are commonly used in warehouses and factories. To achieve the highest production rate, requirements for path planning algorithms have caused researchers to pay significant attention to this problem. The Artificial Potential Field algorithm, which is a local path planning algorithm, has been previously modified to obtain higher smoothness of path, to solve the stagnation problem and to jump off the local minimum. The last itemized problem is taken into account in this paper—local minimum avoidance. Most of the modifications of Artificial Potential Field algorithms focus on a mechanism to jump off a local minimum when robots stagnate. From the efficiency point of view, the mobile robot should bypass the local minimum instead of jumping off it. This paper proposes a novel Artificial Potential Field supported by augmented reality to bypass the upcoming local minimum. The algorithm predicts the upcoming local minimum, and then the mobile robot’s perception is augmented to bypass it. The proposed method allows the generation of shorter paths compared with jumping-off techniques, due to lack of stagnation in a local minimum. This method was experimentally verified using a Husarion ROSbot 2.0 PRO mobile robot and Robot Operating System in a laboratory environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Qisong Song ◽  
Shaobo Li ◽  
Jing Yang ◽  
Qiang Bai ◽  
Jianjun Hu ◽  
...  

The purpose of mobile robot path planning is to produce the optimal safe path. However, mobile robots have poor real-time obstacle avoidance in local path planning and longer paths in global path planning. In order to improve the accuracy of real-time obstacle avoidance prediction of local path planning, shorten the path length of global path planning, reduce the path planning time, and then obtain a better safe path, we propose a real-time obstacle avoidance decision model based on machine learning (ML) algorithms, an improved smooth rapidly exploring random tree (S-RRT) algorithm, and an improved hybrid genetic algorithm-ant colony optimization (HGA-ACO). Firstly, in local path planning, the machine learning algorithms are used to train the datasets, the real-time obstacle avoidance decision model is established, and cross validation is performed. Secondly, in global path planning, the greedy algorithm idea and B-spline curve are introduced into the RRT algorithm, redundant nodes are removed, and the reverse iteration is performed to generate a smooth path. Then, in path planning, the fitness function and genetic operation method of genetic algorithm are optimized, the pheromone update strategy and deadlock elimination strategy of ant colony algorithm are optimized, and the genetic-ant colony fusion strategy is used to fuse the two algorithms. Finally, the optimized path planning algorithm is used for simulation experiment. Comparative simulation experiments show that the random forest has the highest real-time obstacle avoidance prediction accuracy in local path planning, and the S-RRT algorithm can effectively shorten the total path length generated by the RRT algorithm in global path planning. The HGA-ACO algorithm can reduce the iteration number reasonably, reduce the search time effectively, and obtain the optimal solution in path planning.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5547
Author(s):  
Younes Al Younes ◽  
Martin Barczyk

Navigating robotic systems autonomously through unknown, dynamic and GPS-denied environments is a challenging task. One requirement of this is a path planner which provides safe trajectories in real-world conditions such as nonlinear vehicle dynamics, real-time computation requirements, complex 3D environments, and moving obstacles. This paper presents a methodological motion planning approach which integrates a novel local path planning approach with a graph-based planner to enable an autonomous vehicle (here a drone) to navigate through GPS-denied subterranean environments. The local path planning approach is based on a recently proposed method by the authors called Nonlinear Model Predictive Horizon (NMPH). The NMPH formulation employs a copy of the plant dynamics model (here a nonlinear system model of the drone) plus a feedback linearization control law to generate feasible, optimal, smooth and collision-free paths while respecting the dynamics of the vehicle, supporting dynamic obstacles and operating in real time. This design is augmented with computationally efficient algorithms for global path planning and dynamic obstacle mapping and avoidance. The overall design is tested in several simulations and a preliminary real flight test in unexplored GPS-denied environments to demonstrate its capabilities and evaluate its performance.


2021 ◽  
Author(s):  
Guang Yang ◽  
Shuoyu Wang ◽  
Hajime Okamura ◽  
Yasuhiro Ueda ◽  
Toshiaki Yasui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document