scholarly journals A Study on the Ignition of Liquid Fuel Sprays by the Shock Tube Technique : 3rd Report, Effects of Fuel, Droplet Size and Environment

1978 ◽  
Vol 44 (381) ◽  
pp. 1679-1687 ◽  
Author(s):  
Kenji MIYASAKA ◽  
Yukio MIZUTANI
Author(s):  
Amirmahdi Ghasemi ◽  
Mohammad Moghiman ◽  
Seyed Mohammad Javadi ◽  
Naseh Hosseini

The present study is concerned with the effect of fuel droplet size, air inlet preheating and air swirl number on complex soot process in a turbulent liquid-fuelled combustor. A hybrid Eulerian-Lagrangian method is employed to model the reactive flow-field inside the combustor. Equations governing the gas phase are solved by a control volume based semi-implicit iterative procedure while the time-dependent differential equations for each sizes of the fuel droplets are integrated by a semi-analytic method. The processes leading to soot consist of both formation and combustion. Soot formation is simulated using a two-step model while a finite rate combustion model with eddy dissipation concept is implemented for soot combustion. Also, mathematical models for turbulence, combustion, and radiation are used to take account the effects of these processes. Results reveal the significant influence of liquid fuel droplet size, air inlet temperatures and swirl numbers on soot emission from turbulent spray flames. The predictions show that reduction of spray droplet size and increases of air inlet temperature and swirl numbers considerably, increases soot emission from spray flames.


2002 ◽  
Vol 174 (9) ◽  
pp. 103-130 ◽  
Author(s):  
Suresh K. Aggarwal ◽  
Changlin Yan ◽  
Guangsheng Zhu
Keyword(s):  

Author(s):  
Sheng Wei ◽  
Brandon Sforzo ◽  
Jerry Seitzman

In gas turbine combustors, ignition is achieved by using sparks from igniters to start a flame. The process of sparks interacting with fuel/air mixture and creating self-sustained flames is termed forced ignition. Physical and chemical properties of a liquid fuel can influence forced ignition. The physical effects manifest through processes such as droplet atomization, spray distribution, and vaporization rate. The chemical effects impact reaction rates and heat release. This study focuses on the effect of fuel composition on forced ignition of fuel sprays in a well-controlled flow with a commercial style igniter. A facility previously used to examine prevaporized, premixed liquid fuel-air mixtures is modified and employed to study forced ignition of liquid fuel sprays. In our experiments, a wall-mounted, high energy, recessed cavity discharge igniter operating at 15 Hz with average spark energy of 1.25 J is used to ignite liquid fuel spray produced by a pressure atomizer located in a uniform air coflow. The successful outcome of each ignition events is characterized by the (continued) presence of chemiluminescence 2 ms after spark discharge, as detected by a high-speed camera. The ignition probability is defined as the fraction of successful sparks at a fixed condition, with the number of events evaluated for each fuel typically in the range 600–1200. Ten fuels were tested, including standard distillate jet fuels (e.g., JP-8 and Jet-A), as well as many distillate and alternative fuel blends, technical grade n-dodecane, and surrogates composed of a small number of components. During the experiments, the air temperature is controlled at 27 C and the fuel temperature is controlled at 21 C. Experiments are conducted at a global equivalence ratio of 0.55. Results show that ignition probabilities correlate strongly to liquid fuel viscosity (presumably through droplet atomization) and vapor pressure (or recovery temperature), as smaller droplets of a more volatile fuel would lead to increased vaporization rates. This allows the kernel to transition to a self-sustained flame before entrainment reduces its temperature to a point where chemical rates are too slow. Chemical properties of the fuel showed little influence, except when the fuels had similar physical properties. This result demonstrates that physical properties of liquid fuels have dominating effects on forced ignition of liquid fuel spray in coflow air.


Sign in / Sign up

Export Citation Format

Share Document