Volume 4B: Combustion, Fuels, and Emissions
Latest Publications


TOTAL DOCUMENTS

66
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791851067

Author(s):  
Jinhu Yang ◽  
Cunxi Liu ◽  
Haowei Wu ◽  
Fuqiang Liu ◽  
Yong Mu ◽  
...  

The influence of PASR (Pilot stage Air Split Ratio) on the ignition and LBO (Lean Blow Out) performances is experimentally investigated for an SPP (Stratified Partially Premixed) injector in this paper. The pilot stage of the SPP injector comprises two axial air swirlers as well as an air blast prefilm atomizer for pilot fuel preparation. It is believed that the variation of the air split ratio between the outer swirler and the inner swirler of the pilot stage will transform the flow structure and fuel distribution of the local flame anchoring zone, and consequently improves or deteriorates the stability of the pilot flame. The ignition and LBO characteristics were measured for PASR = 8:2, 7:3 and 6:4, and several inexplicable but interesting results are observed. In order to make out the underlying reasons for the differences of the obtained ignition and LBO data, the velocity field and spray concentration at the meridian plane were acquired experimentally with the help of optical diagnostics at isothermal conditions. It it concluded that two dominant mechanisms of flame stability exist depending on the range of the injector pressure drop (Δ Psw/P3t). At low pressure drop of the injector, the flame stability is mainly affected by the fuel distribution, however, the flow structure will play a more important role at high Δ Psw/P3t in that it can transform the local flow structures around the pilot flame root. The inherent correlations between the combustion stability and the flow structure as well as the fuel distribution are disscussed and conclusions are drawn for this research work in the end of this paper.


Author(s):  
Álvaro Muelas ◽  
Pilar Remacha ◽  
Javier Ballester

Recent studies on experimental gas turbines suggest that the addition of ethanol or butanol to Jet A are viable alternatives for reducing CO and NOx emissions while maintaining similar performance to that of pure Jet A. In light of this potential, experimental data regarding the burning characteristics of Jet A/ethanol and Jet A/butanol blends are required in order to better understand their combustion process. Following a previous study on Jet A/butanol droplet combustion, the scope has been extended in order to also include ethanol and a Jet A/ethanol mixture as well as to perform a more detailed characterization. In this work the combustion characteristics of Jet A, butanol, ethanol and their mixtures (20% vol. alcohol in kerosene) are presented for different test conditions. The evaluated combustion characteristics include droplet, flame and soot shell size evolutions, burning rates and image-based soot estimations. The influence of oxygen availability is also ascertained. The evolution of droplet diameter and burning rates for Jet A and its blends with both alcohols are very similar, whereas pure ethanol and butanol display more distinct behaviors. Soot indices are found to be quite different, with a clear reduction in the sooting propensity of the Jet A/alcohol mixtures when compared to neat kerosene. These results support the feasibility of kerosene-alcohol mixtures as promising alternative fuels with similar combustion characteristics, but with much lower sooting propensity than pure kerosene.


Author(s):  
Katsuyoshi Tada ◽  
Kei Inoue ◽  
Tomo Kawakami ◽  
Keijiro Saitoh ◽  
Satoshi Tanimura

Gas-turbine combined-cycle (GTCC) power generation is clean and efficient, and its demand will increase in the future from economic and social perspectives. Raising turbine inlet temperature is an effective way to increase combined cycle efficiency and contributes to global environmental conservation by reducing CO2 emissions and preventing global warming. However, increasing turbine inlet temperature can lead to the increase of NOx emissions, depletion of the ozone layer and generation of photochemical smog. To deal with this issue, MHPS (MITSUBISHI HITACHI POWER SYSTEMS) and MHI (MITSUBISHI HEAVY INDUSTRIES) have developed Dry Low NOx (DLN) combustion techniques for high temperature gas turbines. In addition, fuel flexibility is one of the most important features for DLN combustors to meet the requirement of the gas turbine market. MHPS and MHI have demonstrated DLN combustor fuel flexibility with natural gas (NG) fuels that have a large Wobbe Index variation, a Hydrogen-NG mixture, and crude oils.


Author(s):  
Niclas Hanraths ◽  
Fabian Tolkmitt ◽  
Phillip Berndt ◽  
Neda Djordjevic

Recently, the focus has been laid on the characteristics of pollutant emissions from pulse detonation combustion. Initial studies indicate possibly high nitrogen oxides (NOx) emissions, so the assessment of potential primary reduction methods is advisable. The present work considers the following reduction methods: lean combustion, nitrogen and steam dilution as well as flue gas recirculation. Since such changes in the combustion mixture reduce its reactivity and thus detonability, they can impair a reliable operation in technical systems. In order to explore the potential and limitations of each of these reduction methods, they are compared for mixtures featuring an identical characteristic detonation cell size at given initial conditions. Furthermore, building upon the use of steam dilution, a modified method to add steam to the combustible mixture is investigated. In order to avoid the strong reduction of mixture detonability by steam addition and ensure a robust detonation formation, steam is injected into the already developed detonation front. It was found that, for sufficiently even steam distribution, NOx reduction comparable to a premixed dilution could be achieved. This approach enables the realization of NOx reduction in pulse detonation combustion also for such conditions, for which premix dilution is not feasible. Therefore, combining the premix dilution with post-shock injection offers a promising strategy to substantially reduce NOx emissions from pulse detonation combustion, while at the same time ensuring its reliable operation.


Author(s):  
Huan Zhang ◽  
Zhedian Zhang ◽  
Yan Xiong ◽  
Yan Liu ◽  
Yunhan Xiao

The Moderate or Intense Low-oxygen Dilution (MILD) combustion is characterized by low emission, stable combustion and low noise for various kinds of fuel. MILD combustion is a promising combustion technology for gas turbine. The model combustor composed of an optical quartz combustor liner, four jet nozzles and one pilot nozzle has been designed in this study. The four jet nozzles are equidistantly arranged in the combustor concentric circle and the high-speed jet flows from the nozzles will entrain amount of exhaust gas to make MILD combustion occur. The combustion characteristics of the model combustor under atmosphere pressure have been investigated through experiments and numerical simulations. The influence of equivalence ratio and jet velocity on flow pattern, combustion characteristics and exhaust emissions were investigated in detail, respectively. Laser Doppler velocity (LDV) was utilized to measure the speed of a series of points in the model combustor. The measurement results show that a central recirculation existed in the combustion chamber. As the jet velocity of the nozzles increases, the amount of entrained mass by the jet increases simultaneously, however, the central recirculation zone is similar in shape and size. The recirculation of the model combustor will remain self-similar when the jet velocity varies in the range. The calculation model and method were verified through comparing with experimentally LDV data and be used to optimize the model combustor. Planar laser-induced fluorescence of hydroxyl radical (OH-PLIF) approaches were adopted to investigate the flame structure, the reaction zone and the OH distribution. OH distribution of the paralleled and crossed sections in the model combustor were measured, the whole reaction zone have been analyzed. The results show that the OH distribution was uniform in whole combustor. The exhaust gas composition of the combustor was measured by the “TESTO 350” Exhaust Gas Analyzer. All measurements emission results were corrected to 15% O2 in volume. Experimental results showed that NOx and CO emissions were less than 10 ppm@15%O2 when the equivalence ratio ranges from 0.63 to 0.8.


Author(s):  
Sheng Wei ◽  
Brandon Sforzo ◽  
Jerry Seitzman

In gas turbine combustors, ignition is achieved by using sparks from igniters to start a flame. The process of sparks interacting with fuel/air mixture and creating self-sustained flames is termed forced ignition. Physical and chemical properties of a liquid fuel can influence forced ignition. The physical effects manifest through processes such as droplet atomization, spray distribution, and vaporization rate. The chemical effects impact reaction rates and heat release. This study focuses on the effect of fuel composition on forced ignition of fuel sprays in a well-controlled flow with a commercial style igniter. A facility previously used to examine prevaporized, premixed liquid fuel-air mixtures is modified and employed to study forced ignition of liquid fuel sprays. In our experiments, a wall-mounted, high energy, recessed cavity discharge igniter operating at 15 Hz with average spark energy of 1.25 J is used to ignite liquid fuel spray produced by a pressure atomizer located in a uniform air coflow. The successful outcome of each ignition events is characterized by the (continued) presence of chemiluminescence 2 ms after spark discharge, as detected by a high-speed camera. The ignition probability is defined as the fraction of successful sparks at a fixed condition, with the number of events evaluated for each fuel typically in the range 600–1200. Ten fuels were tested, including standard distillate jet fuels (e.g., JP-8 and Jet-A), as well as many distillate and alternative fuel blends, technical grade n-dodecane, and surrogates composed of a small number of components. During the experiments, the air temperature is controlled at 27 C and the fuel temperature is controlled at 21 C. Experiments are conducted at a global equivalence ratio of 0.55. Results show that ignition probabilities correlate strongly to liquid fuel viscosity (presumably through droplet atomization) and vapor pressure (or recovery temperature), as smaller droplets of a more volatile fuel would lead to increased vaporization rates. This allows the kernel to transition to a self-sustained flame before entrainment reduces its temperature to a point where chemical rates are too slow. Chemical properties of the fuel showed little influence, except when the fuels had similar physical properties. This result demonstrates that physical properties of liquid fuels have dominating effects on forced ignition of liquid fuel spray in coflow air.


Author(s):  
Shan Li ◽  
Shanshan Zhang ◽  
Lingyun Hou ◽  
Zhuyin Ren

Modern gas turbines in power systems employ lean premixed combustion to lower flame temperature and thus achieve low NOx emissions. The fuel/air mixing process and its impacts on emissions are of paramount importance to combustor performance. In this study, the mixing process in a methane-fired model combustor was studied through an integrated experimental and numerical study. The experimental results show that at the dump location, the time-averaged fuel/air unmixedness is less than 10% over a wide range of testing conditions, demonstrating the good mixing performance of the specific premixer on the time-averaged level. A study of the effects of turbulent Schmidt number on the unmixedness prediction shows that for the complex flow field involved, it is challenging for Reynolds-Averaged Navier-Stokes (RANS) simulations with constant turbulent Schmidt number to accurately predict the mixing process throughout the combustor. Further analysis reveals that the production and scalar dissipation are the key physical processes controlling the fuel/air mixing. Finally, the NOx formation in this model combustor was analyzed and modelled through a flamelet-based approach, in which NOx formation is characterized through flame-front NOx and its post-flame formation rate obtained from one-dimensional laminar premixed flames. The effect of fuel/air unmixedness on NOx formation is accounted for through the presumed probability density functions (PDF) of mixture fraction. Results show that the measured NOx in the model combustor are bounded by the model predictions with the fuel/air unmixedness being 3% and 5% of the maximum unmixedness. In the context of RANS, the accuracy in NOx prediction depends on the unmixedness prediction which is sensitive to turbulent Schmidt number.


Author(s):  
Suhyeon Park ◽  
Siddhartha Gadiraju ◽  
Jaideep Pandit ◽  
Srinath Ekkad ◽  
Federico Liberatore ◽  
...  

PIV measurements to understand the flow differences between reacting and non-reacting conditions were conducted in an optically accessible single can combustor. An industrial fuel nozzle was installed at the inlet of the test section to generate the swirl flow for flame stabilization and simulate realistic conditions of a gas turbine combustor. Five different equivalence ratios between 0.50 and 0.75 were tested with propane as fuel. Main air flow was also varied from Reynolds number from 50000 to 110000 with respect to the fuel nozzle diameter. Effect of preheating was tested by changing inlet air temperature from 23 to 200°C. The pressure at the test section was close to atmospheric condition throughout the tests. The measurements were performed with a 2-D PIV system. Time-averaged flow velocity, vorticity and turbulent kinetic energy (TKE) were obtained from PIV data and flow structures under different conditions were compared. Swirl jet impingement location on the liner wall was determined as well to understand the impact on the liner wall. Proper orthogonal decomposition (POD) further analyzed the data to compare coherent structures in the reacting and non-reacting flows.


Author(s):  
H. Ek ◽  
I. Chterev ◽  
N. Rock ◽  
B. Emerson ◽  
J. Seitzman ◽  
...  

This paper presents measurements of the simultaneous fuel distribution, flame position and flow velocity in a high pressure, liquid fueled combustor. Its objective is to develop methods to process, display and compare large quantities of instantaneous data with computations. However, time-averaged flow fields rarely represent the instantaneous, dynamical flow fields in combustion systems. It is therefore important to develop methods that can algorithmically extract dynamical flow features and be directly compared between measurements and computations. While a number of data-driven approaches have been previously presented in the literature, the purpose of this paper is to propose several approaches that are based on understanding of key physical features of the flow — for this reacting swirl flow, these include the annular jet, the swirling flow which may be precessing, the recirculating flow between the annular jets, and the helical flow structures in the shear layers. This paper demonstrates nonlinear averaging of axial and azimuthal velocity profiles, which provide insights into the structure of the recirculation zone and degree of flow precession. It also presents probability fields for the location of vortex cores that enables a convenient method for comparison of their trajectory and phasing with computations. Taken together, these methods illustrate the structure and relative locations of the annular fluid jet, recirculating flow zone, spray location, flame location, and trajectory of the helical vortices.


Author(s):  
Alex Frank ◽  
Peter Therkelsen ◽  
Miguel Sierra Aznar ◽  
Vi H. Rapp ◽  
Robert K. Cheng ◽  
...  

About 75% of the electric power generated by centralized power plants feeds the energy needs from the residential and commercial sectors. These power plants waste about 67% of primary energy as heat emitting 2 billion tons of CO2 per year in the process (∼ 38% of total US CO2 generated per year) [1]. A study conducted by the United States Department of Energy indicated that developing small-scale combined heat and power systems to serve the commercial and residential sectors could have a significant impact on both energy savings and CO2 emissions. However, systems of this scale historically suffer from low efficiencies for a variety of reasons. From a combustion perspective, at these small scales, few systems can achieve the balance between low emissions and high efficiencies due in part to the increasing sensitivity of the system to hydrodynamic and heat transfer effects. Addressing the hydrodynamic impact, the effects of downscaling on the flowfield evolution were studied on the low swirl burner (LSB) to understand if it could be adapted to systems at smaller scales. Utilizing particle image velocimetry (PIV), three different swirlers were studied ranging from 12 mm to 25.4 mm representing an output range of less than 1 kW to over 23 kW. Results have shown that the small-scale burners tested exhibited similar flowfield characteristics to their larger-scale counterparts in the non-reacting cases studied. Utilizing this data, as a proof of concept, a 14 mm diameter LSB with an output of 3.33 kW was developed for use in microturbine operating on a recuperated Brayton cycle. Emissions results from this burner proved the feasibility of the system at sufficiently lean mixtures. Furthermore, integration of the newly developed LSB into a can style combustor for a microturbine application was successfully completed and comfortably meet the stringent emissions targets. While the analysis of the non-reacting cases was successful, the reacting cases were less conclusive and further investigation is required to gain an understanding of the flowfield evolution which is the subject of future work.


Sign in / Sign up

Export Citation Format

Share Document