scholarly journals Three-dimensional Finite Element Analysis on Tightening and Loosening Mechanism of Bolted Joint

2005 ◽  
Vol 71 (702) ◽  
pp. 204-212 ◽  
Author(s):  
Satoshi IZUMI ◽  
Takashi YOKOYAMA ◽  
Atsushi IWASAKI ◽  
Shinsuke SAKAI
2010 ◽  
Vol 118-120 ◽  
pp. 147-150
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Yong Gao ◽  
Wen Lin Liu ◽  
Zhong Hu Jia

Three-dimensional finite element model of a cracked bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of load transfer were compared with results from finite element analysis. The results show that three-dimensional finite element model of cracked bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of hole mod and crack on the load transfer behaviour of single lap bolted joints. The results show that hole mode has big effect on load transfer of cracked bolted joint. In the whole progress of crack growth, the load transfer through bolt 1 decrease, and almost all of the load duduction of bolt 1 transfer into blot 2 rather than into bolt 3.


2010 ◽  
Vol 97-101 ◽  
pp. 3924-3927 ◽  
Author(s):  
Da Zhao Yu ◽  
Yue Liang Chen ◽  
Zhong Hu Jia ◽  
Yong Gao ◽  
Wen Lin Liu

Three-dimensional finite element model of a bolted joint has been developed in the non-linear finite element code MSC.Marc and attempts were made to validate it by comparing results with those of experiments and other finite element. Issues in modeling the contact between the joint parts, which affect the accuracy and efficiency of the model, were presented. Experimental measurements of surface strains and load transfer ratio(LTR) were compared with results from finite element analysis. The results show that three-dimensional finite element model of bolted joint can produce results in close agreement with experiment. Three-dimensional effects such as bolt titling, seconding and through-thickness variations in stress and strain are well represented by such models. Three-dimensional finite element analysis was also used to study the effects of different parameters on the mechanical behaviour of single lap bolted joints. The results show that straight hole, small bolt diameter, and big hole pitch are selected first for bolted joint if other conditions allowed, and effect of bolt material on LTR of joint is small for small load. Interference and pre-stress should be strictly controlled for bolted joints in order to attain the best fatigue capability of lap joint.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Sign in / Sign up

Export Citation Format

Share Document