scholarly journals Flow Boiling Heat Transfer of Tap Water in Micro-Channels (2nd Report, Heat Transfer Correlation for Boiling Region in Straight Channels)

2005 ◽  
Vol 71 (711) ◽  
pp. 2823-2826
Author(s):  
Kenichi HASHIZUME ◽  
Takahiro YUKI
Author(s):  
Mayank I. Vyas ◽  
Salim A. Channiwala ◽  
Mitesh N. Prajapati

After reviewing the available literature on flow boiling heat transfer in mini/micro tubes and channels, it is felt that there is need for predictive correlations which is applicable over wide range of parameters. In present work a new correlation for two-phase flow boiling heat transfer coefficient is developed, which has considered nucleate boiling and convective boiling heat transfer effect. To develop this correlation we have considered total 651 data points, which have been collected from the open available literature covering different operational conditions and different dimensions of channels. We have selected CO2 as a working fluid because it does not contain chlorine, hence an efficient and environmentally safe refrigerant and would be potential replacement for R-22. CO2 has unusual heat transfer and two-phase flow characteristics, and is very different from those of conventional refrigerant. Also a comparison of present correlation with the best published correlation for CO2 is done. The results of this comparison indicate that the new developed correlation is superior to published best correlation for CO2. Present correlation is also compared with best published correlation for all fluids and with the correlation developed by using CO2 data. The results of these both case, indicate that the present correlation is superior.


Author(s):  
Wenzhi Cui ◽  
Longjian Li ◽  
Mingdao Xin ◽  
Tien-Chien Jen ◽  
Qinghua Chen ◽  
...  

In the research of intube flow boiling, a widely accepted factor is that there are two main mechanisms participating in the heat transfer. One is nucleate boiling, which is dependent on the presence of active nuclei on the heated wall and the heat transfer coefficient is much influenced by the heat flux, much similar to pool boiling. In the other heat transfer mode, the boiling nuclei are fully suppressed and heat is transferred by the liquid evaporation through the interface of liquid film and vapor core. This is also called forced convective evaporation or convective boiling. In the evaporation region, the dependence of heat transfer on heat flux is not distinct and governed mainly by the mass flux and vapor quality. In the open literature on convective boiling heat transfer of refrigerant researches have been extensively conducted in straight tube. The studies, however, on two-phase flow boiling heat transfer in helically coiled tube are far less than that in straight tube. Because of the high efficiency in heat transfer and compactness in volume, helically coiled tubes are used extensively in practical industries. Therefore, it is important for application to obtain the correlations of flow boiling heat transfer coefficient in helically coiled tube. A new kind of micro-finned helically coiled tube was developed by the present authors and the flow boiling heat transfer characteristics are experimental studied in this paper, using R134a, an environment-friendly refrigerant as experimental fluid. By introducing convective boiling number NCB, as suggested by V. V. Klimenko (in Ref. [8]), the transition boundary between nucleate boiling and forced convective boiling in helically coiled tube is examined, which is much different with that in straight tube. Based on the analysis of the mechanisms of flow boiling, heat transfer correlation of the specific micro-finned helically coiled tubes is obtained, which has a mean absolute deviation of 13.8%.


Author(s):  
Sehwan In ◽  
Sangkwon Jeong

This paper describes the flow boiling heat transfer of R123/R134a mixture in a single round micro-channel with 0.19 mm ID. The flow boiling heat transfer coefficients were measured with the variation of mixture composition (R123 mole fraction: 0.502, 0.746) at various experimental conditions: mass velocities (314, 392, 470 kg/m2-s), heat fluxes (10, 15, 20 kW/m2) and vapor qualities (0.2–0.85). The heat transfer characteristics of R123/R134a mixture are similar to those of pure R123 observed in the previous flow boiling experiment. The similarity of heat transfer characteristics denotes that the heat transfer is governed by evaporation of thin liquid film around the elongated bubbles like the case of pure R123. The heat transfer coefficients of R123/R134a mixture are compared with those of equivalent pure refrigerant by the correlation developed from pure R123 experimental results. The large reduction of heat transfer coefficients compared with pure refrigerant is found in micro-channels flow boiling by the mass transfer effect of mixed refrigerant. In addition, macro-channel correlations for mixed refrigerant do not make accurate prediction about the reduction of heat transfer coefficients.


Sign in / Sign up

Export Citation Format

Share Document