scholarly journals An Optimal Design for Vibration Characteristics of Laminated Rectangular Plates by Combining Elastic Support Points and Fiber Orientations.

1997 ◽  
Vol 63 (613) ◽  
pp. 3023-3029
Author(s):  
Xilu ZHAO ◽  
Yoshihiro NARITA
2020 ◽  
Vol 86 (5) ◽  
pp. 65-72
Author(s):  
Yu. D. Grigoriev

The problem of constructing Q-optimal experimental designs for polynomial regression on the interval [–1, 1] is considered. It is shown that well-known Malyutov – Fedorov designs using D-optimal designs (so-called Legendre spectrum) are other than Q-optimal designs. This statement is a direct consequence of Shabados remark which disproved the Erdős hypothesis that the spectrum (support points) of saturated D-optimal designs for polynomial regression on a segment appeared to be support points of saturated Q-optimal designs. We present a saturated exact Q-optimal design for polynomial regression with s = 3 which proves the Shabados notion and then extend this statement to approximate designs. It is shown that when s = 3, 4 the Malyutov – Fedorov theorem on approximate Q-optimal design is also incorrect, though it still stands for s = 1, 2. The Malyutov – Fedorov designs with Legendre spectrum are considered from the standpoint of their proximity to Q-optimal designs. Case studies revealed that they are close enough for small degrees s of polynomial regression. A universal expression for Q-optimal distribution of the weights pi for support points xi for an arbitrary spectrum is derived. The expression is used to tabulate the distribution of weights for Malyutov – Fedorov designs at s = 3, ..., 6. The general character of the obtained expression is noted for Q-optimal weights with A-optimal weight distribution (Pukelsheim distribution) for the same problem statement. In conclusion a brief recommendation on the numerical construction of Q-optimal designs is given. It is noted that in this case in addition to conventional numerical methods some software systems of symbolic computations using methods of resultants and elimination theory can be successfully applied. The examples of Q-optimal designs considered in the paper are constructed using precisely these methods.


2011 ◽  
Vol 2011.50 (0) ◽  
pp. 185-186
Author(s):  
Seung-Cheol Lee ◽  
Kumpei Yugami ◽  
Shinya Honda ◽  
Yoshihiro Narita

2012 ◽  
Vol 487 ◽  
pp. 894-897
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu ◽  
Qing Jun Guo

This paper introduces the FEA method for a certain type of aero-engine turbine blade and makes a vibration characteristics analysis to this aero-engine turbine blade based on this method. The vibration characteristic of this aero-engine turbine blade is studied and the natural modal of the turbine blade is calculated based on UG software. The first six natural frequencies and mode shapes are given. According to the analysis results the dynamic characteristics of the blade are discussed. The analysis method and results in this paper can be used for further study on optimal design and vibration safety verification for the blade.


2012 ◽  
Vol 189 ◽  
pp. 443-447
Author(s):  
Wei Qiang Zhao ◽  
Yong Xian Liu ◽  
Mo Wu Lu

This paper introduces a FEA method for vibration characteristics analysis of an aero-engine shrouded turbine blade and makes an actual modal analysis of this shrouded blade based on this method in UG software environment. The first six natural frequencies and mode shapes of this shrouded blade are calculated. And also, the dynamic characteristics of the shrouded turbine blade are discussed in detail according to the analysis results. The FEA method and the vibration characteristics analysis results in the paper can be used for optimal design and vibration safety verification of this aero-engine shrouded turbine blade.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Shuangxia Shi ◽  
Bin Xiao ◽  
Guoyong Jin ◽  
Chao Gao

A modeling method is proposed for the vibration characteristics of rectangular plates with cutouts having variable size. Different from the existing modeling method by considering the cutout as an extremely thin part of the plate, the energy principles in conjunction with Rayleigh-Ritz solution technique are employed for the modeling of the structure. Under this theoretical framework, the effect of the cutout is taken into account by subtracting the energies of the cutout domains from the total energies of the whole plate with arbitrary boundary conditions. The displacement of the rectangular plate with nonuniform physic parameters is expressed as the combination of a two-dimensional trigonometric cosine series and supplementary terms introduced to ensure the uniform convergence of the solution over the entire solution domain including the cutouts boundary. The effectiveness and reliability of the eigenmodes of the rectangular plate with cutouts are checked against the results obtained by the finite element method (FEM). The cutout number, position, and size are varied to illustrate the effect of the cutouts on the vibration characteristics of the rectangular plate with cutouts.


Sign in / Sign up

Export Citation Format

Share Document