scholarly journals A Study on Robot-Human System with Consideration of Individual Preferences (2nd Report, Multimodal Human-Machine Interface for Object-Handing Robot System)

2007 ◽  
Vol 73 (729) ◽  
pp. 1408-1415 ◽  
Author(s):  
Mitsuru JINDAI ◽  
Satoru SHIBATA ◽  
Tomonori YAMAMOTO ◽  
Tomio WATANABE
Author(s):  
Erhan Akdogan ◽  
M. Arif Adli ◽  
Ertugrul Taçgin ◽  
Nureddin Bennett

The demand for rehabilitation increases daily as a result of diseases, occupational and traffic accidents and population growth. In the present time, some important problems occur regarding the rehabilitation period: the transportation of patients, the acquisition and storage of treatment data and the need to support the physiotherapists with intelligent devices. In order to overcome these challenges, the authors hereby propose a human machine interface to control an intelligent rehabilitation robot system designed for the lower limbs. The human machine interface has a structure that is created with a rule-based intelligent controlling structure, combined with conventional controller and an easy-to-use graphical user interface. By means of this interface, the rehabilitation sessions can be stored and members of the rehabilitation team can reach to this stored data via internet. Additionally, the patient can receive treatment in his house. One physiotherapist is able to treat several patients at a time by utilizing this system. The system’s capacity has been elaborated through the test results.


1990 ◽  
Author(s):  
B. Bly ◽  
P. J. Price ◽  
S. Park ◽  
S. Tepper ◽  
E. Jackson ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 687
Author(s):  
Jinzhen Dou ◽  
Shanguang Chen ◽  
Zhi Tang ◽  
Chang Xu ◽  
Chengqi Xue

With the development and promotion of driverless technology, researchers are focusing on designing varied types of external interfaces to induce trust in road users towards this new technology. In this paper, we investigated the effectiveness of a multimodal external human–machine interface (eHMI) for driverless vehicles in virtual environment, focusing on a two-way road scenario. Three phases of identifying, decelerating, and parking were taken into account in the driverless vehicles to pedestrian interaction process. Twelve eHMIs are proposed, which consist of three visual features (smile, arrow and none), three audible features (human voice, warning sound and none) and two physical features (yielding and not yielding). We conducted a study to gain a more efficient and safer eHMI for driverless vehicles when they interact with pedestrians. Based on study outcomes, in the case of yielding, the interaction efficiency and pedestrian safety in multimodal eHMI design was satisfactory compared to the single-modal system. The visual modality in the eHMI of driverless vehicles has the greatest impact on pedestrian safety. In addition, the “arrow” was more intuitive to identify than the “smile” in terms of visual modality.


Author(s):  
Saverio Trotta ◽  
Dave Weber ◽  
Reinhard W. Jungmaier ◽  
Ashutosh Baheti ◽  
Jaime Lien ◽  
...  

Procedia CIRP ◽  
2021 ◽  
Vol 100 ◽  
pp. 488-493
Author(s):  
Florian Beuss ◽  
Frederik Schmatz ◽  
Marten Stepputat ◽  
Fabian Nokodian ◽  
Wilko Fluegge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document