physical features
Recently Published Documents


TOTAL DOCUMENTS

1379
(FIVE YEARS 458)

H-INDEX

50
(FIVE YEARS 8)

2022 ◽  
Vol 6 (GROUP) ◽  
pp. 1-28
Author(s):  
Abhinav Choudhry ◽  
Jinda Han ◽  
Xiaoyu Xu ◽  
Yun Huang

Virtual Influencers (VIs) are computer-generated characters, many of which are often visually indistinguishable from humans and interact with the world in the first-person perspective as social media influencers. They are gaining popularity by creating content in various areas, including fashion, music, art, sports, games, environmental sustainability, and mental health. Marketing firms and brands increasingly use them to capitalise on their millions of followers. Yet, little is known about what prompts people to engage with these digital beings. In this paper, we present our interview study with online users who followed different VIs on Instagram beyond the fashion application domain. Our findings show that the followers are attracted to VIs due to a unique mixture of visual appeal, sense of mystery, and creative storytelling that sets VI content apart from that of real human influencers. Specifically, VI content enables digital artists and content creators by removing the constraints of bodies and physical features. The followers not only perceived VIs' rising popularity in commercial industries, but also are supportive of VI involvement in non-commercial causes and campaigns. However, followers are reluctant to attribute trustworthiness to VIs in general though they display trust in limited domains, e.g., technology, music, games, and art. This research highlights VI's potential as innovative digital content, carrying influence and employing more varied creators, an appeal that could be harnessed by diverse industries and also by public interest organisations.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 163
Author(s):  
Karl Hess

This review is related to the Einstein-Bohr debate and to Einstein–Podolsky–Rosen’s (EPR) and Bohm’s (EPRB) Gedanken-experiments as well as their realization in actual experiments. I examine a significant number of papers, from my minority point of view and conclude that the well-known theorems of Bell and Clauser, Horne, Shimony and Holt (CHSH) deal with mathematical abstractions that have only a tenuous relation to quantum theory and the actual EPRB experiments. It is also shown that, therefore, Bell-CHSH cannot be used to assess the nature of quantum entanglement, nor can physical features of entanglement be used to prove Bell-CHSH. Their proofs are, among other factors, based on a statistical sampling argument that is invalid for general physical entities and processes and only applicable for finite “populations”; not for elements of physical reality that are linked, for example, to a time-like continuum. Bell-CHSH have, furthermore, neglected the subtleties of the theorem of Vorob’ev that includes their theorems as special cases. Vorob’ev found that certain combinatorial-topological cyclicities of classical random variables form a necessary and sufficient condition for the constraints that are now known as Bell-CHSH inequalities. These constraints, however, must not be linked to the observables of quantum theory nor to the actual EPRB experiments for a variety of reasons, including the existence of continuum-related variables and appropriate considerations of symmetry.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 106
Author(s):  
Hoang Thi Phuong ◽  
Nguyen Kim Thoa ◽  
Phung Thi Anh Tuyet ◽  
Quyen Nguyen Van ◽  
Yen Dao Hai

Cellulose nanomaterials (CNs) are renewable, bio-derived materials that can address not only technological challenges but also social impacts. This ability results from their unique properties, for example, high mechanical strength, high degree of crystallinity, biodegradable, tunable shape, size, and functional surface chemistry. This minireview provides chemical and physical features of cellulose nanomaterials and recent developments as an adsorbent and an antimicrobial material generated from bio-renewable sources.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Roberto Fiorenza ◽  
Roberta Agata Farina ◽  
Enrica Maria Malannata ◽  
Francesca Lo Presti ◽  
Stefano Andrea Balsamo

Solar photothermo-catalysis is a fascinating multi-catalytic approach for volatile organic compounds (VOCs) removal. In this work, we have explored the performance and the chemico-physical features of non-critical, noble, metal-free MnOx-ZrO2 mixed oxides. The structural, morphological, and optical characterizations of these materials pointed to as a low amount of ZrO2 favoured a good interaction and the ionic exchange between the Mn and the Zr ions. This favoured the redox properties of MnOx increasing the mobility of its oxygens that can participate in the VOCs oxidation through a Mars-van Krevelen mechanism. The further application of solar irradiation sped up the oxidation reactions promoting the VOCs total oxidation to CO2. The MnOx-5 wt.%ZrO2 sample showed, in the photothermo-catalytic tests, a toluene T90 (temperature of 90% of conversion) of 180 °C and an ethanol T90 conversion to CO2 of 156 °C, 36 °C, and 205 °C lower compared to the thermocatalytic tests, respectively. Finally, the same sample exhibited 84% toluene conversion and the best selectivity to CO2 in the ethanol removal after 5 h of solar irradiation at room temperature, a photoactivity similar to the most employed TiO2-based materials. The as-synthetized mixed oxide is promising for an improved sustainability in both catalyst design and environmental applications.


Nature ◽  
2022 ◽  
Author(s):  
J. Grey Monroe ◽  
Thanvi Srikant ◽  
Pablo Carbonell-Bejerano ◽  
Claude Becker ◽  
Mariele Lensink ◽  
...  

AbstractSince the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences1. Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome—mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias2 reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.


2022 ◽  
Author(s):  
Sarah Anne Sauvé ◽  
Jeremy Marozeau ◽  
Benjamin Zendel

Auditory stream segregation, or separating sounds into their respective sources, and tracking them over time is a fundamental auditory ability. Previous research has separately explored the impacts of aging and musicianship on the ability to separate and follow auditory streams. The current study evaluated the simultaneous effects of age and musicianship on auditory streaming induced by three physical features: intensity, spectral envelope and temporal envelope. In the first study, older and younger musicians and non-musicians with normal hearing identified deviants in a four-note melody interleaved with distractors that were more or less similar to the melody in terms of intensity, spectral envelope and temporal envelope. In the second study, older and younger musicians and non-musicians participated in a dissimilarity rating paradigm with pairs of melodies that differed along the same three features. Results suggested that auditory streaming skills are maintained in older adults but that older adults rely on intensity more than younger adults while musicianship is associated with increased sensitivity to spectral and temporal envelope, acoustic features that are typically less effective for stream segregation, particularly in older adults.


Nanomedicine ◽  
2022 ◽  
Author(s):  
Dhruba Dhar ◽  
Swachhatoa Ghosh ◽  
Soumen Das ◽  
Jyotirmoy Chatterjee

Rapid vascular growth, infiltrative cells and high tumor heterogenicity are some glioblastoma multiforme (GBM) characteristics, making it the most lethal form of brain cancer. Low efficacy of the conventional treatment modalities leads to rampant disease progression and a median survival of 15 months. Magnetic nanoparticles (MNPs), due to their unique physical features/inherent abilities, have emerged as a suitable theranostic platform for targeted GBM treatment. Thus, new strategies are being designed to enhance the efficiency of existing therapeutic techniques such as chemotherapy, radiotherapy, and so on, using MNPs. Herein, the limitations of the current therapeutic strategies, the role of MNPs in mitigating those inadequacies, recent advances in the MNP-based theranostics of GBM and possible future directions are discussed.


Author(s):  
K. Gangadhar ◽  
P. Manasa Seshakumari ◽  
M. Venkata Subba Rao ◽  
Ali J. Chamkha

In the present study, the physical features of the bioconvective MHD flow of a couple stress fluid over an upper horizontal surface (i.e. surface shaped like a submarine or any ( uhsp) aerodynamical automobile) is analysed by considering radiation and viscous dissipation effects. In the fluid-saturated domain flow is induced due to the reaction of catalytic surface, double diffusion and stretching fluid layers. In fact, couple stress fluid is electrically conducted because non-uniform magnetic field is imposed. With the assistance of appropriate similarity transformations governing equations of the study are reduced to set of ordinary differential equations. Thereafter, built-in MATLAB solver bvp4c is implemented to solve the system numerically. By means of graphs and tables variations of the velocity, temperature, concentration, friction factor, local heat and mass transfer rates are observed thoroughly by varying the flow controlling parameters. From this analysis, main observations are, for rising values of couple stress and magnetic parameter velocity is decline, whereas temperature rises for the same parameters and increase in the thermal boundary layer is noted for the Brinkman number, whereas reverse trend is noted in the concentration boundary layer. Finally, comparison is done and a good correlation is identified between the present analysis and perversely recorded analysis.


Author(s):  
Orhun Soydan

Family health centers in Turkey started to be implemented for the first time in Düzce in 2004 years within the scope of Law No. 5258. While determining the physical conditions of the places where family health centers are built, the first item in the regulation is that the building should be easily accessible. This situation shows the importance of the subject in terms of accessibility. While determining the features of the places where FHCs will be made, environmental characteristics are also taken into consideration. Environmental features are effective in determining the FHCs location in different ways. These impacts are divided into two groups: the physical features that pavements, roads and parks can include, and the social, cultural and institutional features of neighborhoods that include local social ties and collective activities. From this point of view, the importance of the location of family health centers relative to roads and houses is understood. The aim of this study is to examine the accessibility of Family Health Centers in Konyaaltı, Antalya, on a neighborhood basis using Geographic Information Systems. Konyaaltı has 21 Family Health Centers. As a result of the analyses, it was determined that most of the neighborhoods had problems in terms of accessibility, while a very few of them did not experience problems in terms of accessibility. In terms of the total number of buildings, the ratio of buildings that are 500 meters walking distance from any family health center by using highways is 35.56%. With these rates, 3,634 of the 10,2018 buildings remain within the limits of the regulation. Finally; suggestions were made to increase accessibility to these areas.


2022 ◽  
Vol 14 (1) ◽  
pp. 472
Author(s):  
Setyo Nugroho ◽  
Junyi Zhang

This study aims to assess a sense of place in the context of an Indonesian city through real-time walking experience. With rapid urban development, the cityscape may change, leading to a lack of a sense of place. Here, the sense of place was measured by utilizing individual reactions to different urban design qualities and perceptual qualities during walking. Previous methods on visitors’ evaluation of places, walking experience and photographing, were adapted by adding two more stages: in-depth interviews and a workshop, obtaining participants’ opinions and behaviours. The analysis results showed that the participants experienced the sense of place through physical and non-physical features corresponding to walking speed. While the old buildings and ornament details attracted participants’ attention, this study demonstrated that the two-way interaction with residents also strengthened the sense of place. The major finding was that the participants were concerned about improving pedestrian infrastructure and the conservation of old buildings in the area. With the assistance of in-depth interviews and a workshop, participants’ perspectives were visually reflected in a comprehensive way. This study may be helpful for urban planners to manage the sense of place in historic city centres under the pressure of rapid urban development.


Sign in / Sign up

Export Citation Format

Share Document