scholarly journals Application of finite element analyses to limit load assessment of JSME fitness-for-service code

Author(s):  
Masayuki KAMAYA ◽  
Hideo MACHIDA ◽  
Kiminobu HOJO
Author(s):  
Prasad Mangalaramanan

This paper demonstrates the limitations of repeated elastic finite element analyses (REFEA) based limit load determination that uses the classical lower bound theorem. The r-node method is prescribed as an alternative for obtaining better limit load estimates. Lower bound aspects pertaining to r-nodes are also discussed.


Author(s):  
Phuong H. Hoang ◽  
Bostjan Bezensek ◽  
Howard J. Rathbun

Finite element analyses (FEA) have been used to study the effects of multi-axial loadings on bending limit load of local wall thinned pipes. It has been shown by investigators that torsion can be combined with bending moments using SRSS (Square Root of the Sum of the Squares) method for planar flaws with a limited axial extent. The treatment of torsion for non-planar flaws, which exceed the axial extent limit, will be a subject for future investigations. Since the reported FEA results are for various pipe sizes, flaw shapes with different mesh sizes, element types and computer codes, a set of benchmark problems was proposed and analyzed by participating investigators. The benchmark analysis results are presented in this paper.


Author(s):  
L. Pan ◽  
R. Seshadri

Many structural components, such as rolled sheets, directionally solidified superalloys and composites, are made of anisotropic materials. The knowledge of limit load is useful in the design and the sizing of these components and structures. This paper presents the extension of the modified mα-method to anisotropic materials. Mura’s variational principle is employed in conjunction with repeated elastic finite element analyses (FEA). The secant modulus of the discretized finite elements in the reference direction in successive elastic iterations is used to estimate the plastic flow parameter for the anisotropic components. The modified initial elastic properties are adopted to ensure the “elastic” stress fields satisfy the anisotropic yield surface. Using the notion of “leap-frogging” to limit state, improved lower-bound limit loads can be obtained. The formulation is applied to two anisotropic components, and the limit load estimates are compared with those using elastic compensation method and inelastic FEA.


2002 ◽  
Vol 124 (4) ◽  
pp. 433-439 ◽  
Author(s):  
L. Pan ◽  
R. Seshadri

The procedures described in this paper for determining a limit load is based on Mura’s extended variational formulation. Used in conjunction with linear elastic finite element analyses, the approach provides a robust method to estimate limit loads of mechanical components and structures. The secant modulus of the various elements in a finite element discretization scheme is prescribed in order to simulate the distributed effect of the plastic flow parameter, μ0. The upper and lower-bound multipliers m0 and m′ obtained using this formulation converge to near exact values. By using the notion of “leap-frogging” to limit state, an improved lower-bound multiplier, mα, can be obtained. The condition for which mα is a reasonable lower bound is discussed in this paper. The method is applied to component configurations such as cylinder, torispherical head, indeterminate beam, and a cracked specimen.


1993 ◽  
Vol 17 (2) ◽  
pp. 197-214
Author(s):  
C.P.D. Fernando ◽  
R. Seshadri

An approximate method for determining limit loads of mechanical components and structures on the basis of two linear elastic finite element analyses is described. The load-control nature of the redistribution nodes (r-nodes) leads to considerable simplifications. The combined r-node equivalent stress, which can be obtained by invoking an appropriate multibar mode, can be identified with the reference stress. The method is applied to beam, framed and arched structures, and the limit load estimates obtained are reasonably accurate.


Author(s):  
Richard Olson ◽  
Sureshkumar Kalyanam ◽  
Jeong Soon Park ◽  
Frederick W. Brust

The LBB.ENG2[1] circumferential through-wall crack (TWC) J-estimation scheme forms the basis for the Extremely Low Probability of Rupture (xLPR)[2] probabilistic pipe fracture analysis for TWC elastic-plastic fracture mechanics (EPFM) stability assessment. The LBB.ENG2 methodology uses a reduced thickness pipe wall analogy to approximate the behavior of actual cracked pipe and sets the thickness of the reduced section by making the usual cracked pipe limit load assumption. Sometime during the original LBB.ENG2 development process, it was discovered that LBB.ENG2 was not as good as desired at predicting the maximum moment carrying capacity of pipe fracture experiments with longer cracks. Accordingly, the effective thickness equation was modified to be 1.0 at crack angles less than π/4, 4/π at angles greater than π/3, and linear between these values using a so-called ψ function. When LBB.ENG2 was coded for the TWC stability module for xLPR, TWC_fail, the behavior described above was implemented. Quite unexpectedly, with the new coding, exploration of TWC_fail’s bounds uncovered two discontinuities in the complete moment-pressure-critical crack size failure surface. Subsequently, it was found that these discontinuities were caused by the discontinuity in the derivative of the ψ function. This paper documents the approach used to smooth the TWC_fail moment-pressure-critical crack size surface by making a ψ function fit that minimizes the difference between J from LBB.ENG2 and J from finite element analyses results. The results of the finite element analyses and fitting methodology are described and the basic equations for the solution are presented. Following this, the new ψ function is applied to cases to evaluate the efficacy of the approach.


Author(s):  
R. Seshadri ◽  
M. M. Hossain

Limit load determination of mechanical components and structures by the mα-tangent method is proposed herein. The proposed technique is a simplified method that enables rapid determination of limit loads for a general class of mechanical components and structures. The method makes use of statically admissible stress field based on a linear elastic finite element analysis to estimate the limit loads. The method is applied to a number of mechanical component configurations and the results compare well with those obtained by the corresponding elastic-plastic finite element analyses results.


2003 ◽  
Vol 125 (1) ◽  
pp. 36-45 ◽  
Author(s):  
J. Chattopadhyay ◽  
T. V. Pavankumar ◽  
B. K. Dutta ◽  
H. S. Kushwaha

The evaluation of J-integral from experimental data requires the ηpl and γ functions. However, these functions are available for limited geometry in the literature. In this paper, limit-load-based general expressions of ηpl and γ functions have been derived. These general expressions are then utilized to derive the ηpl and γ functions for through-wall circumferentially/axially cracked elbows under in-plane bending moment which are not available in the literature. The functions are then applied to generate J-R curves from fracture experiments of elbows. Finite element analyses of the tested elbows are also described in the paper.


Author(s):  
Woo-Sik Kim ◽  
Young-Pyo Kim ◽  
Young-Tai Kho ◽  
Jae-Boong Choi

Pipelines have the highest capacity and are the safest and least environmentally disruptive way for gas or oil transmission. Recently, failures due to corrosion defects became of major concern in maintaining pipeline integrity. A number of solutions have been developed for the assessment of remaining strength of corroded pipelines. However, these solutions are known to be dependent on material properties and pipeline geometries. In this paper, a Fitness-For-Purpose (FFP) type limit load solution for corroded gas pipelines made of X65 steel is proposed based on experimental results and finite element analyses. For this purpose, a series of burst tests with various types of corrosion defects was performed. Finite element simulation was carried out on burst test to derive failure criteria. And then, a series of finite element analyses were performed to obtain a limit load solution for a single corrosion defect on the basis of burst test simulation. As a result, an FFP type limit load solution for corroded X65 gas pipelines was proposed.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
R. Seshadri ◽  
M. M. Hossain

Limit load determination of mechanical components and structures by the mα-tangent method is proposed herein. The proposed technique is a simplified method that enables rapid determination of limit loads for a general class of mechanical components and structures. The method makes use of statically admissible stress field based on a linear elastic finite element analysis to estimate the limit loads. The method is applied to a number of mechanical component configurations and the results compare well with those obtained by the corresponding elastic-plastic finite element analyses results.


Sign in / Sign up

Export Citation Format

Share Document