Higher numerical ranges of quaternion matrices

2015 ◽  
Vol 30 ◽  
pp. 889-904 ◽  
Author(s):  
Narjes Haj Aboutalebi ◽  
Gholamreza Aghamollaei ◽  
Hossein Momenaee Kermani

Let n and k be two positive integers and k n. In this paper, the notion of k−numerical range of n−square quaternion matrices is introduced. Some algebraic and geometrical properties are investigated. In particular, a necessary and sufficient condition for the convexity of the k−numerical range of a quaternion matrix is given. Moreover, a new description of 1−numerical range of normal quaternion matrices is also stated.

1997 ◽  
Vol 40 (4) ◽  
pp. 498-508
Author(s):  
Chikkanna Selvaraj ◽  
Suguna Selvaraj

AbstractThis paper is a study of summability methods that are based on Dirichlet convolution. If f(n) is a function on positive integers and x is a sequence such that then x is said to be Af-summable to L. The necessary and sufficient condition for the matrix Af to preserve bounded variation of sequences is established. Also, the matrix Af is investigated as ℓ − ℓ and G − G mappings. The strength of the Af-matrix is also discussed.


2014 ◽  
Vol 27 ◽  
Author(s):  
Hiroshi Nakazato ◽  
Natalia Bebiano ◽  
Joao Da Providencia

This note investigates the convexity of the indefinite joint numerical range of a tuple of Hermitian matrices in the setting of Krein spaces. Its main result is a necessary and sufficient condition for convexity of this set. A new notion of “quasi-convexity” is introduced as a refinement of pseudo-convexity.


1990 ◽  
Vol 41 (3) ◽  
pp. 509-512
Author(s):  
Jingcheng Tong

Let X = {xk}k≥1 be a sequence of positive integers. Let Qk = [O;xk,xk−1,…,x1] be the finite continued fraction with partial quotients xi(1 ≤ i ≤ k). Denote the set of the limit points of the sequence {Qk}k≥1 by Λ(X). In this note a necessary and sufficient condition is given for Λ(X) to contain no rational numbers other than zero.


2010 ◽  
Vol 17 (02) ◽  
pp. 345-360 ◽  
Author(s):  
Qingwen Wang ◽  
Shaowen Yu ◽  
Wei Xie

In this paper, for a consistent quaternion matrix equation AXB = C, the formulas are established for maximal and minimal ranks of real matrices X1, X2, X3, X4 in solution X = X1 + X2i + X3j + X4k. A necessary and sufficient condition is given for the existence of a real solution of the quaternion matrix equation. The expression is also presented for the general solution to this equation when the solvability conditions are satisfied. Moreover, necessary and sufficient conditions are given for this matrix equation to have a complex solution or a pure imaginary solution. As applications, the maximal and minimal ranks of real matrices E, F, G, H in a generalized inverse (A +Bi + Cj + Dk)- = E + Fi + Gj + Hk of a quaternion matrix A + Bi + Cj + Dk are also considered. In addition, a necessary and sufficient condition is derived for the quaternion matrix equations A1XB1 = C1 and A2XB2 = C2 to have a common real solution.


1980 ◽  
Vol 21 (3) ◽  
pp. 321-328
Author(s):  
Mordechai Lewin

The rational fractiona, c, p, q positive integers, reduces to a polynomial under conditions specified in a result of Grosswald who also stated necessary and sufficient conditions for all the coefficients to tie nonnegative.This last result is given a different proof using lemmas interesting in themselves.The method of proof is used in order to give necessary and sufficient conditions for the positive coefficients to be equal to one. For a < 2pq, a = αp + βq, α, β nonnegative integers, c > 1, the exact positions of the nonzero coefficients are established. Also a necessary and sufficient condition for the number of vanishing coefficients to be minimal is given.


10.37236/1116 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Guantao Chen ◽  
Joan P. Hutchinson ◽  
Ken Keating ◽  
Jian Shen

A unit bar-visibility graph is a graph whose vertices can be represented in the plane by disjoint horizontal unit-length bars such that two vertices are adjacent if and only if there is a unobstructed, non-degenerate, vertical band of visibility between the corresponding bars. We generalize unit bar-visibility graphs to $[1,k]$-bar-visibility graphs by allowing the lengths of the bars to be between $1/k$ and $1$. We completely characterize these graphs for trees. We establish an algorithm with complexity $O(kn)$ to determine whether a tree with $n$ vertices has a $[1,k]$-bar-visibility representation. In the course of developing the algorithm, we study a special case of the knapsack problem: Partitioning a set of positive integers into two sets with sums as equal as possible. We give a necessary and sufficient condition for the existence of such a partition.


Filomat ◽  
2017 ◽  
Vol 31 (1) ◽  
pp. 61-68
Author(s):  
Masayo Fujimuraa

A bicentric polygon is a polygon which has both an inscribed circle and a circumscribed one. For given two circles, the necessary and sufficient condition for existence of bicentric triangle for these two circles is known as Chapple?s formula or Euler?s theorem. As one of natural extensions of this formula, we characterize the inscribed ellipses of a triangle which is inscribed in the unit circle. We also discuss the condition for the ?circumscribed? ellipse of a triangle which is circumscribed about the unit circle. For the proof of these results, we use some geometrical properties of Blaschke products on the unit disk.


2018 ◽  
Vol 36 (2) ◽  
pp. 57-81
Author(s):  
Véronique Bazier-Matte ◽  
David Racicot-Desloges ◽  
Tanna Sánchez McMillan

Frieze patterns (in the sense of Conway and Coxeter) are related to cluster algebras of type A and to signed continuant polynomials. In view of studying certain classes of cluster algebras with coefficients, we extend the concept of signed continuant polynomial to define a new family of friezes, called c-friezes, which generalises frieze patterns. Having in mind the cluster algebras of finite type, we identify a necessary and sufficient condition for obtaining periodic c-friezes. Taking into account the Laurent phenomenon and the positivity conjecture, we present ways of generating c-friezes of integers and of positive integers. We also show some specific properties of c-friezes.


2017 ◽  
Vol 13 (05) ◽  
pp. 1083-1094 ◽  
Author(s):  
Tianxin Cai ◽  
Zhongyan Shen ◽  
Lirui Jia

In 2014, Wang and Cai established the following harmonic congruence for any odd prime [Formula: see text] and positive integer [Formula: see text], [Formula: see text] where [Formula: see text] and [Formula: see text] denote the set of positive integers which are prime to [Formula: see text]. In this paper, we obtain an unexpected congruence for distinct odd primes [Formula: see text], [Formula: see text] and positive integers [Formula: see text], [Formula: see text] and the necessary and sufficient condition for [Formula: see text] Finally, we raise a conjecture that for [Formula: see text] and odd prime power [Formula: see text], [Formula: see text], [Formula: see text] However, we fail to prove it even for [Formula: see text] with three distinct prime factors.


2013 ◽  
Vol 5 (3) ◽  
pp. 447-455
Author(s):  
G. Mariumuthu ◽  
M. S. Saraswathy

In a graph G, the distance d(u,v) between a pair of vertices u and v is the length of a shortest path joining them. A vertex v is a boundary vertex of a vertex u if for all The boundary graph B(G) based on a connected graph G is a simple graph which has the vertex set as in G. Two vertices u and v are adjacent in B(G) if either u is a boundary of v or v is a boundary of u. If G is disconnected, then each vertex in a component is adjacent to all other vertices in the other components and is adjacent to all of its boundary vertices within the component. Given a positive integer m, the mth iterated boundary graph of G is defined as A graph G is periodic if for some m. A graph G is said to be an eventually periodic graph if there exist positive integers m and k >0 such that We give the necessary and sufficient condition for a graph to be eventually periodic.  Keywords: Boundary graph; Periodic graph. © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi: http://dx.doi.org/10.3329/jsr.v5i3.14866 J. Sci. Res. 5 (3), xxx-xxx (2013) 


Sign in / Sign up

Export Citation Format

Share Document