scholarly journals Inertia Sets of Semicliqued Graphs

2021 ◽  
Vol 37 ◽  
pp. 747-757
Author(s):  
Amy Yielding ◽  
Taylor Hunt ◽  
Joel Jacobs ◽  
Jazmine Juarez ◽  
Taylor Rhoton ◽  
...  

In this paper, we investigate inertia sets of simple connected undirected graphs. The main focus is on the shape of their corresponding inertia tables, in particular whether or not they are trapezoidal. This paper introduces a special family of graphs created from any given graph, $G$, coined semicliqued graphs and denoted $\widetilde{K}G$. We establish the minimum rank and inertia sets of some $\widetilde{K}G$ in relation to the original graph $G$. For special classes of graphs, $G$, it can be shown that the inertia set of $G$ is a subset of the inertia set of $\widetilde{K}G$. We provide the inertia sets for semicliqued cycles, paths, stars, complete graphs, and for a class of trees. In addition, we establish an inertia set bound for semicliqued complete bipartite graphs.

1982 ◽  
Vol 25 (2) ◽  
pp. 187-206
Author(s):  
Yousef Alavi ◽  
Sabra S. Anderson ◽  
Gary Chartrand ◽  
S.F. Kapoor

A graph G, every vertex of which has degree at least three, is randomly 3-axial if for each vertex v of G, any ordered collection of three paths in G of length one with initial vertex v can be cyclically randomly extended to produce three internally disjoint paths which contain all the vertices of G. Randomly 3-axial graphs of order p > 4 are characterized for p ≢ 1 (mod 3), and are shown to be either complete graphs or certain regular complete bipartite graphs.


2021 ◽  
Vol 10 (4) ◽  
pp. 2115-2129
Author(s):  
P. Kandan ◽  
S. Subramanian

On the great success of bond-additive topological indices like Szeged, Padmakar-Ivan, Zagreb, and irregularity measures, yet another index, the Mostar index, has been introduced recently as a peripherality measure in molecular graphs and networks. For a connected graph G, the Mostar index is defined as $$M_{o}(G)=\displaystyle{\sum\limits_{e=gh\epsilon E(G)}}C(gh),$$ where $C(gh) \,=\,\left|n_{g}(e)-n_{h}(e)\right|$ be the contribution of edge $uv$ and $n_{g}(e)$ denotes the number of vertices of $G$ lying closer to vertex $g$ than to vertex $h$ ($n_{h}(e)$ define similarly). In this paper, we prove a general form of the results obtained by $Do\check{s}li\acute{c}$ et al.\cite{18} for compute the Mostar index to the Cartesian product of two simple connected graph. Using this result, we have derived the Cartesian product of paths, cycles, complete bipartite graphs, complete graphs and to some molecular graphs.


Author(s):  
Atilio Luiz ◽  
Simone Dantas ◽  
Luisa Ricardo

A graceful labeling of a graph G with m edges consists in labeling the vertices of G with distinct integers from 0 to m such that, when each edge is assigned the absolute difference of the labels of its endpoints, all induced edge labels are distinct. Rosa established two well known conjectures: all trees are graceful (1966) and all triangular cacti are graceful (1988). In order to contribute to both conjectures we study these problems in the context of graph games. The graceful game was introduced by Tuza in 2017 as a two-players game on a connected graph in which the players Alice and Bob take turns labeling the vertices with distinct integers from 0 to m. Alice’s goal is to gracefully label the graph as Bob’s goal is to prevent it from happening. In this work, we present the first results in this area by showing winning strategies for Alice and Bob in complete graphs, paths, cycles, complete bipartite graphs, caterpillars, prisms, wheels, helms, webs, gear graphs, hypercubes and some powers of paths.


10.37236/1994 ◽  
2012 ◽  
Vol 19 (1) ◽  
Author(s):  
Rani Hod ◽  
Marcin Krzywkowski

A team of $n$ players plays the following game. After a strategy session, each player is randomly fitted with a blue or red hat. Then, without further communication, everybody can try to guess simultaneously his own hat color by looking at the hat colors of the other players. Visibility is defined by a directed graph; that is, vertices correspond to players, and a player can see each player to whom he is connected by an arc. The team wins if at least one player guesses his hat color correctly, and no one guesses his hat color wrong; otherwise the team loses. The team aims to maximize the probability of a win, and this maximum is called the hat number of the graph.Previous works focused on the hat problem on complete graphs and on undirected graphs. Some cases were solved, e.g., complete graphs of certain orders, trees, cycles, and bipartite graphs. These led Uriel Feige to conjecture that the hat number of any graph is equal to the hat number of its maximum clique.We show that the conjecture does not hold for directed graphs. Moreover, for every value of the maximum clique size, we provide a tight characterization of the range of possible values of the hat number. We construct families of directed graphs with a fixed clique number the hat number of which is asymptotically optimal. We also determine the hat number of tournaments to be one half.


2020 ◽  
Vol 20 (02) ◽  
pp. 2050007
Author(s):  
P. C. LISNA ◽  
M. S. SUNITHA

A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all v ∈ V in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ i ≤ n) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.


Sign in / Sign up

Export Citation Format

Share Document