scholarly journals Constructing Well-Organized Wireless Sensor Networks with Low-level Identification

2016 ◽  
Vol 9 (1) ◽  
pp. 17-23 ◽  
Author(s):  
M Rajesh ◽  
J. M Gnanasekar

In most distributed systems, naming of nodes for low-level communication leverages topological location (such as node addresses) and is independent of any application. In this paper, we investigate an emerging class of distributed systems where low-level communication does not rely on network topological location. Rather, low-level communication is based on attributes that are external to the network topology and relevant to the application. When combined with dense deployment of nodes, this kind of named data enables in-network processing for data aggregation, collaborative signal processing, and similar problems. These approaches are essential for emerging applications such as sensor networks where resources such as bandwidth and energy are limited. This paper is the first description of the software architecture that supports named data and in-network processing in an operational, multi-application sensor-network. We show that approaches such as in-network aggregation and nested queries can significantly affect network traffic. In one experiment aggregation reduces traffic by up to 42% and nested queries reduce loss rates by 30%. Although aggregation has been previously studied in simulation, this paper demonstrates nested queries as another form of in-network processing, and it presents the first evaluation of these approaches over an operational test bed.

Author(s):  
Can Umut Ileri ◽  
Cemil Aybars Ural ◽  
Orhan Dagdeviren ◽  
Vedat Kavalci

An undirected graph can be represented by G(V,E) where V is the set of vertices and E is the set of edges connecting vertices. The problem of finding a vertex cover (VC) is to identify a set of vertices VC such that at least one endpoint of every edge in E is incident to a vertex V in VC. Vertex cover is a very important graph theoretical structure for various types of communication networks such as wireless sensor networks, since VC can be used for link monitoring, clustering, backbone formation and data aggregation management. In this chapter, we will define vertex cover and related problems with their applications on communication networks and we will survey some important distributed algorithms on this research area.


2021 ◽  
Vol 40 (5) ◽  
pp. 8727-8740
Author(s):  
Rajvir Singh ◽  
C. Rama Krishna ◽  
Rajnish Sharma ◽  
Renu Vig

Dynamic and frequent re-clustering of nodes along with data aggregation is used to achieve energy-efficient operation in wireless sensor networks. But dynamic cluster formation supports data aggregation only when clusters can be formed using any set of nodes that lie in close proximity to each other. Frequent re-clustering makes network management difficult and adversely affects the use of energy efficient TDMA-based scheduling for data collection within the clusters. To circumvent these issues, a centralized Fixed-Cluster Architecture (FCA) has been proposed in this paper. The proposed scheme leads to a simplified network implementation for smart spaces where it makes more sense to aggregate data that belongs to a cluster of sensors located within the confines of a designated area. A comparative study is done with dynamic clusters formed with a distributive Low Energy Adaptive Clustering Hierarchy (LEACH) and a centralized Harmonic Search Algorithm (HSA). Using uniform cluster size for FCA, the results show that it utilizes the available energy efficiently by providing stability period values that are 56% and 41% more as compared to LEACH and HSA respectively.


Sign in / Sign up

Export Citation Format

Share Document