Postharvest Application of Low Rates of DMX-7 Mold Inhibitor on Storage Fungi of Corn During Ambient Air Drying and Storage

1995 ◽  
Vol 11 (4) ◽  
pp. 573-576
Author(s):  
D. G. White ◽  
J. Toman Jr.

of storage as short as possible, only; 24 h should not be ex­ ceeded. Table III comprises the most important criteria for valid static and dynamic sampling. It seems that both the guide of Warren Springs, U.K. and the VDI-Guideline might be a useful base to describe commonly accepted sampling procedures aiming at a standardization of sampling which might be a first step for a harmonization of olfactometric measurements in the different laboratories and countri es. REFERENCES (1) BULLEY, N.R. and D. PHILLIPS (1980). Sensory evaluation of agricul­ tural odours: A critical review. Can. Agric. Eng. 22, 107 - 112. (2) HENRY, J.G. and R. GEHR (1980). Odour control: An operator's guide. Journal WPCF 52, 2523 - 2537. (3) ROOS, C., J.A. DON and J. SCHAEFER (1984). Characterization of odour-polluted air. In: Proc.Int.Symp., Soc. Beige de Filtr. (eds.), 25-27 April 1984, Louvain-La-Neuve, Belgium, pp. 3 - 22. (4) BAKER, A.R. and R.C. DOERR (1959). Methods of sampling and storage of air containing vapors and gases. Int.J.Air Poll. 2, 142 - 158. (5) SCHUETTE, F.J. (1967). Plastic bags for collection of gas samples. Atmosph.Environm. 1, 515 - 519. (6) SCHODDER, F. (1977T. Messen von Geruchsstoffkonzentrationen, Erfassen von Geruch. Grundl. Landtechnik 27, 73 - 82. (7) CORMACK, D., T.A. DORLING and B.W7J. LYNCH (1974). Comparison of tech­ niques for organoleptic odour-intensity assessment. Chem.Ind. (Lon­ don) no. 2, 857 - 861. (8) SCHUETZLE, D., T.J. PRATER and S. RUDDELL (1975). Sampling and anal­ ysis of emissions from stationary sources. I. Odour and total hydro­ carbons. APCA Journal 25, 925 - 932. (9) WAUTERS, E., E. WALRAVENS, E. MUYLLE and G. VERDUYN (1983). An evalu­ ation of a fast sampling procedure for the trace analysis of volatile organic compounds in ambient air. Environm.Monitor.Assessm. 3, 151-160. (10) LACHENMAYER, U. and H. KOHLER (1984). Untersuchungen zur Neuentwick-lung eines Olfaktometers. Staub - Reinhalt. Luft 44, 359 - 362. (11) BERNARD, F. (1984). Simplified methods of odour measurement: Indus­ trial application and interest for administrative control. Proc. Int. Symp., Soc. Beige de Filtr. (eds.), 25 - 27 April 1984, Louvain-La-Neuve, Belgium, pp. 139 - 150. (12) GILLARD, F. (1984). Measurement of odours by dynamic olfactometry. Application to the steel and carbonization industries. Proc.Int.Symp., Soc. Beige de Filtr. (eds.), 25 - 27 April 1984, Louvain-La-Neuve, Belgium, pp. 53 - 86. (13) MANNEBECK, H. (1975). Tragbare Olfaktometer. VDI-Bericht 226, 103-105. (14) BEDBOROUGH, D.R. (1980). Sensory measurement of odours. In: Odour Control - a concise guide, F.H.H. Valentin and A.A. North (eds.), Warren Springs Laboratories, Stevenage, Hertfordshire, U.K., pp. 17-30. (15) THIELE, V. (1984). Olfaktometrie an einer Emissionsquelle - Ergebnis-se des VDI-Ringvergleichs. Staub - Reinhalt. Luft 44, 342 - 351. (16) DUFFEE, R.A., J.P. WAHL, W. MARRONE and J.S. NADERT1973). Defining and measuring objectionable odors. Internat. Pollution Eng. Congress, Philadelphia, paper no 25a, pp. 192 - 201.


1960 ◽  
Vol 53 (3) ◽  
pp. 375-380 ◽  
Author(s):  
C. M. Christensen ◽  
A. C. Hodson
Keyword(s):  

2014 ◽  
Vol 56 ◽  
pp. 1-7 ◽  
Author(s):  
T.J. Wontner-Smith ◽  
D.M. Bruce ◽  
S.K. Cardwell ◽  
D.M. Armitage ◽  
P. Jennings
Keyword(s):  

Author(s):  
Hideyuki Fumoto ◽  
Ji-Feng Chen ◽  
Qun Zhou ◽  
Alex L. Massiello ◽  
Raymond Dessoffy ◽  
...  

Objective Most commercially available bioprosthetic valves are stored in an aldehyde solution. We report a new alternative method: Self-expanding valves composed of dehydrated tissues with a high glycerin:water ratio can be collapsed into specially designed sheaths prior to sterilization for ease of delivery and storage. Materials and Methods Changes in tissue dimension of five samples of bovine pericardium were evaluated from baseline after glycerol treatment, air-drying, ethylene oxide (EtO) sterilization, and rehydration with water. Three valves fabricated from glutaraldehyde cross-linked tissues, including porcine pericardial tissue, bovine pericardial tissue, and porcine aortic valve, were dehydrated through a proprietary glycerin-based process, collapsed, placed within a catheter, EtO sterilized, stored for up to 212 days, and rehydrated with water. These valves were characterized in a mock circulation by mounting them at the inlet portion of a pneumatic pump before dehydration and after rehydration to evaluate the effects of dehydration and rehydration on the valve performance. Results Tissues treated with glycerol solution showed no significant changes in dimension from baseline after glycerol treatment, air-drying, EtO sterilization, and rehydration with water. In all the valves, pump flows reached the maximum output capacity of the pneumatic pump after rehydration without an increase in filling pressures as compared with those before dehydration. Conclusions This method for storing collapsible bioprosthetic valves using a proprietary glycerin-based process demonstrated excellent valve performance.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 807D-807
Author(s):  
Adam Dale ◽  
Stoyan Prigozliev ◽  
George Chu* ◽  
Selim Kermasha

`Seascape' strawberries were harvested and treated with various concentrations of riboflavin and placed on a lab bench for 0, 1, 2, 3, or 4 days, respectively, in a cold room at 4 °C. After each day, samples were taken and stored in a freezer at -20 °C until they were evaluated for anthocyanins content. Both exogenously applied riboflavin and storage time increased cyaniding 3-glucoside and pelargonidin 3-glucoside in the strawberry fruits. This result indicates that riboflavin could be used to increase red color in strawberries destined for processing as well as be included as a vitamin supplement in the processed products.


Sign in / Sign up

Export Citation Format

Share Document