<i>Multiple Object Tracking-by-Detection for Fruit Counting on an Apple Tree Canopy</i>

2018 ◽  
Author(s):  
Shinfeng D. Lin ◽  
Tingyu Chang ◽  
Wensheng Chen

In computer vision, multiple object tracking (MOT) plays a crucial role in solving many important issues. A common approach of MOT is tracking by detection. Tracking by detection includes occlusions, motion prediction, and object re-identification. From the video frames, a set of detections is extracted for leading the tracking process. These detections are usually associated together for assigning the same identifications to bounding boxes holding the same target. In this article, MOT using YOLO-based detector is proposed. The authors’ method includes object detection, bounding box regression, and bounding box association. First, the YOLOv3 is exploited to be an object detector. The bounding box regression and association is then utilized to forecast the object’s position. To justify their method, two open object tracking benchmarks, 2D MOT2015 and MOT16, were used. Experimental results demonstrate that our method is comparable to several state-of-the-art tracking methods, especially in the impressive results of MOT accuracy and correctly identified detections.


Author(s):  
K. Botterill ◽  
R. Allen ◽  
P. McGeorge

The Multiple-Object Tracking paradigm has most commonly been utilized to investigate how subsets of targets can be tracked from among a set of identical objects. Recently, this research has been extended to examine the function of featural information when tracking is of objects that can be individuated. We report on a study whose findings suggest that, while participants can only hold featural information for roughly two targets this task does not affect tracking performance detrimentally and points to a discontinuity between the cognitive processes that subserve spatial location and featural information.


2010 ◽  
Author(s):  
Todd S. Horowitz ◽  
Michael A. Cohen ◽  
Yair Pinto ◽  
Piers D. L. Howe

Sign in / Sign up

Export Citation Format

Share Document