scholarly journals Factors Affecting Consent Rate for Whole Genome Sequencing of Patients with Congenital Heart Disease

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinny Tsang

The Whole Genome Sequencing Project initiated by The Hospital for Sick Children of Toronto intents to enroll patients between one to eighteen years of age with congenital heart disease to test the efficiency of such a method for potential personalized diagnoses and treatments. Twenty-five randomly approached patients were chosen to be observed of their consent rate to the project based on factors of age, gender, ethnicity, presence of heart diseases in the patient’s family, and type of congenital heart disease represented. Females and ethnicities not of European descent are considered to be a part of the minority groups, generally being under represented thus having a lower consent rate. There were no significant correlations between consent rates and familial history of heart disease, type of heart disease and age groups. All these findings can aid in future studies of the SickKids Hospital; which patients should be approached for higher consent rates, and the inclusivity of minority groups to alleviate bias in medical studies.

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Nathaly M. Sweeney ◽  
Shareef A. Nahas ◽  
Sh. Chowdhury ◽  
Sergey Batalov ◽  
Michelle Clark ◽  
...  

AbstractCongenital heart disease (CHD) is the most common congenital anomaly and a major cause of infant morbidity and mortality. While morbidity and mortality are highest in infants with underlying genetic conditions, molecular diagnoses are ascertained in only ~20% of cases using widely adopted genetic tests. Furthermore, cost of care for children and adults with CHD has increased dramatically. Rapid whole genome sequencing (rWGS) of newborns in intensive care units with suspected genetic diseases has been associated with increased rate of diagnosis and a net reduction in cost of care. In this study, we explored whether the clinical utility of rWGS extends to critically ill infants with structural CHD through a retrospective review of rWGS study data obtained from inpatient infants < 1 year with structural CHD at a regional children’s hospital. rWGS diagnosed genetic disease in 46% of the enrolled infants. Moreover, genetic disease was identified five times more frequently with rWGS than microarray ± gene panel testing in 21 of these infants (rWGS diagnosed 43% versus 10% with microarray ± gene panels, p = 0.02). Molecular diagnoses ranged from syndromes affecting multiple organ systems to disorders limited to the cardiovascular system. The average daily hospital spending was lower in the time period post blood collection for rWGS compared to prior (p = 0.003) and further decreased after rWGS results (p = 0.000). The cost was not prohibitive to rWGS implementation in the care of this cohort of infants. rWGS provided timely actionable information that impacted care and there was evidence of decreased hospital spending around rWGS implementation.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Nathaly M. Sweeney ◽  
Shareef A. Nahas ◽  
Shimul Chowdhury ◽  
Sergey Batalov ◽  
Michelle Clark ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Nathaly M. Sweeney ◽  
Shareef A. Nahas ◽  
Shimul Chowdhury ◽  
Sergey Batalov ◽  
Michelle Clark ◽  
...  

2021 ◽  
Vol 11 (6) ◽  
pp. 562
Author(s):  
Olga María Diz ◽  
Rocio Toro ◽  
Sergi Cesar ◽  
Olga Gomez ◽  
Georgia Sarquella-Brugada ◽  
...  

Congenital heart disease is a group of pathologies characterized by structural malformations of the heart or great vessels. These alterations occur during the embryonic period and are the most frequently observed severe congenital malformations, the main cause of neonatal mortality due to malformation, and the second most frequent congenital malformations overall after malformations of the central nervous system. The severity of different types of congenital heart disease varies depending on the combination of associated anatomical defects. The causes of these malformations are usually considered multifactorial, but genetic variants play a key role. Currently, use of high-throughput genetic technologies allows identification of pathogenic aneuploidies, deletions/duplications of large segments, as well as rare single nucleotide variants. The high incidence of congenital heart disease as well as the associated complications makes it necessary to establish a diagnosis as early as possible to adopt the most appropriate measures in a personalized approach. In this review, we provide an exhaustive update of the genetic bases of the most frequent congenital heart diseases as well as other syndromes associated with congenital heart defects, and how genetic data can be translated to clinical practice in a personalized approach.


2014 ◽  
Vol 32 (2) ◽  
pp. 159-163 ◽  
Author(s):  
Felipe Alves Mourato ◽  
Lúcia Roberta R. Villachan ◽  
Sandra da Silva Mattos

OBJECTIVE:To determine the frequence and profile of congenital heart defects in Down syndrome patients referred to a pediatric cardiologic center, considering the age of referral, gender, type of heart disease diagnosed by transthoracic echocardiography and its association with pulmonary hypertension at the initial diagnosis.METHODS:Cross-sectional study with retrospective data collection of 138 patients with Down syndrome from a total of 17,873 records. Descriptive analysis of the data was performed, using Epi-Info version 7.RESULTS: Among the 138 patients with Down syndrome, females prevailed (56.1%) and 112 (81.2%) were diagnosed with congenital heart disease. The most common lesion was ostium secundum atrial septal defect, present in 51.8%, followed by atrioventricular septal defect, in 46.4%. Ventricular septal defects were present in 27.7%, while tetralogy of Fallot represented 6.3% of the cases. Other cardiac malformations corresponded to 12.5%. Pulmonary hypertension was associated with 37.5% of the heart diseases. Only 35.5% of the patients were referred before six months of age.CONCLUSIONS: The low percentage of referral until six months of age highlights the need for a better tracking of patients with Down syndrome in the context of congenital heart disease, due to the high frequency and progression of pulmonary hypertension.


PEDIATRICS ◽  
1958 ◽  
Vol 21 (1) ◽  
pp. 165-165
Author(s):  
PAUL R. LURIE

Many books on rheumatic fever, congenital heart disease, laboratory diagnosis of heart diseases, and lengthy sections on cardiologic subjects in pediatric textbooks have been written but until now there is no comprehensive textbook in the field of pediatric cardiology. It is fortunate that the first book to appear to fill this real need is an excellent one. Dr. Nadas, of the Children's Medical Center in Boston and Harvard Medical School, is a recognized authority in the field of cardiology and has contributed much to its recent rapid development.


2017 ◽  
Vol 25 (1) ◽  
pp. 103-109 ◽  
Author(s):  
Anna-Luisa Häcker ◽  
Barbara Reiner ◽  
Renate Oberhoffer ◽  
Alfred Hager ◽  
Peter Ewert ◽  
...  

Objective Central systolic blood pressure (SBP) is a measure of arterial stiffness and strongly associated with atherosclerosis and end-organ damage. It is a stronger predictor of cardiovascular events and all-cause mortality than peripheral SBP. In particular, for children with congenital heart disease, a higher central SBP might impose a greater threat of cardiac damage. The aim of the study was to analyse and compare central SBP in children with congenital heart disease and in healthy counterparts. Patients and methods Central SBP was measured using an oscillometric method in 417 children (38.9% girls, 13.0 ± 3.2 years) with various congenital heart diseases between July 2014 and February 2017. The test results were compared with a recent healthy reference cohort of 1466 children (49.5% girls, 12.9 ± 2.5 years). Results After correction for several covariates in a general linear model, central SBP of children with congenital heart disease was significantly increased (congenital heart disease: 102.1 ± 10.2 vs. healthy reference cohort: 100.4 ± 8.6, p < .001). The analysis of congenital heart disease subgroups revealed higher central SBP in children with left heart obstructions (mean difference: 3.6 mmHg, p < .001), transpositions of the great arteries after arterial switch (mean difference: 2.2 mmHg, p = .017) and univentricular hearts after total cavopulmonary connection (mean difference: 2.1 mmHg, p = .015) compared with the reference. Conclusion Children with congenital heart disease have significantly higher central SBP compared with healthy peers, predisposing them to premature heart failure. Screening and long-term observations of central SBP in children with congenital heart disease seems warranted in order to evaluate the need for treatment.


Sign in / Sign up

Export Citation Format

Share Document