scholarly journals Approximate Bayes Estimators of the Parameters of the Inverse Gaussian Distribution Under Different Loss Functions

Author(s):  
Ilhan Usta ◽  
Merve Akdede

Inverse Gaussian is a popular distribution especially in the reliability and life time modelling, and thus the estimation of its unknown parameters has received considerable interest. This paper aims to obtain the Bayes estimators for the two parameters of the inverse Gaussian distribution under varied loss functions (squared error, general entropy and linear exponential). In Bayesian procedure, we consider commonly used non-informative priors such as the vague and Jeffrey’s priors, and also propose using the extension of Jeffrey’s prior. In the case where the two parameters are unknown, the Bayes estimators cannot be obtained in the closed-form. Hence, we employ two approximation methods, namely Lindley and Tierney Kadane (TK) approximations, to attain the Bayes estimates of the parameters. In this paper. the effects of considered loss functions, priors and approximation methods on Bayesian parameter estimation are also presented. The performance of Bayes estimates is compared with the corresponding classical estimates in terms of the bias and the relative efficiency throughout an extensive simulation study. The results of the comparison show that Bayes estimators obtained by TK method under linear exponential loss function using the proposed prior outperform the other estimators for estimating the parameters of inverse Gaussian distribution most of the time. Finally, a real data set is provided to illustrate the results.

Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5743-5752 ◽  
Author(s):  
Jun-Mei Jia ◽  
Zai-Zai Yan ◽  
Xiu-Yun Peng

In this paper, a first-failure progressive hybird censoring scheme is introduced that combines progressive first-failure censoring and Type-I censoring. We obtain the maximum likelihood estimators (MLEs) and the Bayes estimators of the unknown parameters from the inverse Gaussian distribution based on the first-failure progressive hybird censoring scheme. The Bayes estimates are computed under squared error, Linex and general entropy loss functions. The asymptotic confidence intervals and coverage probabilities for the parameters are obtained based on the observed Fisher?s information matrix. Also, highest posterior density credible intervals for the parameters are computed using Gibbs sampling procedure. A Monte Carlo simulation study is conducted in order to compare the Bayes estimators with the MLEs. Real life data sets are provided to illustration purposes.


2021 ◽  
Vol 19 (1) ◽  
pp. 2-17
Author(s):  
Gyan Prakash

In the present study, the Pareto model is considered as the model from which observations are to be estimated using a Bayesian approach. Properties of the Bayes estimators for the unknown parameters have studied by using different asymmetric loss functions on hybrid censoring pattern and their risks have compared. The properties of maximum likelihood estimation and approximate confidence length have also been investigated under hybrid censoring. The performances of the procedures are illustrated based on simulated data obtained under the Metropolis-Hastings algorithm and a real data set.


2009 ◽  
Vol 2 (1) ◽  
pp. 77-86
Author(s):  
G. Prakash ◽  
D. C. Singh

This paper suggests sometimes pool estimators for the measure of dispersion in the inverse Gaussian distribution and their properties are studied in terms of the relative bias and relative efficiency under two different loss functions.  Keywords: Sometimes pool estimator; Level of significance; Relative bias; Relative efficiency; Effective interval. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i1.2809                 J. Sci. Res. 2 (1), 77-86 (2010) 


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 934
Author(s):  
Yuxuan Zhang ◽  
Kaiwei Liu ◽  
Wenhao Gui

For the purpose of improving the statistical efficiency of estimators in life-testing experiments, generalized Type-I hybrid censoring has lately been implemented by guaranteeing that experiments only terminate after a certain number of failures appear. With the wide applications of bathtub-shaped distribution in engineering areas and the recently introduced generalized Type-I hybrid censoring scheme, considering that there is no work coalescing this certain type of censoring model with a bathtub-shaped distribution, we consider the parameter inference under generalized Type-I hybrid censoring. First, estimations of the unknown scale parameter and the reliability function are obtained under the Bayesian method based on LINEX and squared error loss functions with a conjugate gamma prior. The comparison of estimations under the E-Bayesian method for different prior distributions and loss functions is analyzed. Additionally, Bayesian and E-Bayesian estimations with two unknown parameters are introduced. Furthermore, to verify the robustness of the estimations above, the Monte Carlo method is introduced for the simulation study. Finally, the application of the discussed inference in practice is illustrated by analyzing a real data set.


2016 ◽  
Vol 5 (4) ◽  
pp. 1
Author(s):  
Bander Al-Zahrani

The paper gives a description of estimation for the reliability function of weighted Weibull distribution. The maximum likelihood estimators for the unknown parameters are obtained. Nonparametric methods such as empirical method, kernel density estimator and a modified shrinkage estimator are provided. The Markov chain Monte Carlo method is used to compute the Bayes estimators assuming gamma and Jeffrey priors. The performance of the maximum likelihood, nonparametric methods and Bayesian estimators is assessed through a real data set.


Sign in / Sign up

Export Citation Format

Share Document