relative bias
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 29)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
Vol 12 (4) ◽  
pp. 1061-1098
Author(s):  
Mickaël Lalande ◽  
Martin Ménégoz ◽  
Gerhard Krinner ◽  
Kathrin Naegeli ◽  
Stefan Wunderle

Abstract. Climate change over High Mountain Asia (HMA, including the Tibetan Plateau) is investigated over the period 1979–2014 and in future projections following the four Shared Socioeconomic Pathways: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The skill of 26 Coupled Model Intercomparison Project phase 6 (CMIP6) models is estimated for near-surface air temperature, snow cover extent and total precipitation, and 10 of them are used to describe their projections until 2100. Similarly to previous CMIP models, this new generation of general circulation models (GCMs) shows a mean cold bias over this area reaching −1.9 [−8.2 to 2.9] ∘C (90 % confidence interval) in comparison with the Climate Research Unit (CRU) observational dataset, associated with a snow cover mean overestimation of 12 % [−13 % to 43 %], corresponding to a relative bias of 52 % [−53 % to 183 %] in comparison with the NOAA Climate Data Record (CDR) satellite dataset. The temperature and snow cover model biases are more pronounced in winter. Simulated precipitation rates are overestimated by 1.5 [0.3 to 2.9] mm d−1, corresponding to a relative bias of 143 % [31 % to 281 %], but this might be an apparent bias caused by the undercatch of solid precipitation in the APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources) observational reference. For most models, the cold surface bias is associated with an overestimation of snow cover extent, but this relationship does not hold for all models, suggesting that the processes of the origin of the biases can differ from one model to another. A significant correlation between snow cover bias and surface elevation is found, and to a lesser extent between temperature bias and surface elevation, highlighting the model weaknesses at high elevation. The models with the best performance for temperature are not necessarily the most skillful for the other variables, and there is no clear relationship between model resolution and model skill. This highlights the need for a better understanding of the physical processes driving the climate in this complex topographic area, as well as for further parameterization developments adapted to such areas. A dependency of the simulated past trends on the model biases is found for some variables and seasons; however, some highly biased models fall within the range of observed trends, suggesting that model bias is not a robust criterion to discard models in trend analysis. The HMA median warming simulated over 2081–2100 with respect to 1995–2014 ranges from 1.9 [1.2 to 2.7] ∘C for SSP1-2.6 to 6.5 [4.9 to 9.0] ∘C for SSP5-8.5. This general warming is associated with a relative median snow cover extent decrease from −9.4 % [−16.4 % to −5.0 %] to −32.2 % [−49.1 % to −25.0 %] and a relative median precipitation increase from 8.5 % [4.8 % to 18.2 %] to 24.9 % [14.4 % to 48.1 %] by the end of the century in these respective scenarios. The warming is 11 % higher over HMA than over the other Northern Hemisphere continental surfaces, excluding the Arctic area. Seasonal temperature, snow cover and precipitation changes over HMA show a linear relationship with the global surface air temperature (GSAT), except for summer snow cover which shows a slower decrease at strong levels of GSAT.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2538
Author(s):  
Naser Izadi ◽  
Elaheh Ghasemi Karakani ◽  
Abbas Ranjbar Saadatabadi ◽  
Aliakbar Shamsipour ◽  
Ebrahim Fattahi ◽  
...  

In regional studies, reanalysis datasets can extend precipitation time series with insufficient observations. In the present study, the ERA5 precipitation dataset was compared to observational datasets from meteorological stations in nine different precipitation zones of Iran (0.125° × 0.125° grid box) for the period 2000–2018, and measurement criteria and skill detection criteria were applied to analyze the datasets. The results of the daily analysis revealed that the correlation between ERA5 and observed precipitation were larger than 0.5 at 90% of stations. Also, The daily standard relative bias indicated that precipitation was overestimated in zone 6. As detection criteria, the frequency bias index (FBI) and proportion correct (PC) showed that the ERA5 data could capture daily precipitation events. Correlation confidence comparisons between the ERA5 and observational time series at daily, monthly, and seasonal scales revealed that the correlation confidence was higher at monthly and seasonal scales. The standard relative bias results at monthly and seasonal scales followed the daily relative bias results, and most of the ERA5 underestimations during the summer belonged to zone 1 in the coastal area of the Caspian Sea with convective precipitation. In addition, some complex mountainous regions were associated with overestimated precipitation, especially in northwest Iran (zone 6) in different time scales.


2021 ◽  
Vol 25 (7) ◽  
pp. 4209-4229
Author(s):  
Xiaolu Ling ◽  
Ying Huang ◽  
Weidong Guo ◽  
Yixin Wang ◽  
Chaorong Chen ◽  
...  

Abstract. Soil moisture (SM) plays a critical role in the water and energy cycles of the Earth system; consequently, a long-term SM product with high quality is urgently needed. In this study, five SM products, including one microwave remote sensing product – the European Space Agency's Climate Change Initiative (ESA CCI) – and four reanalysis data sets – European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis – Interim (ERA-Interim), National Centers for Environmental Prediction (NCEP), the 20th Century Reanalysis Project from National Oceanic and Atmospheric Administration (NOAA), and the ECMWF Reanalysis 5 (ERA5) – are systematically evaluated using in situ measurements during 1981–2013 in four climate regions at different timescales over the Chinese mainland. The results show that ESA CCI is closest to the observations in terms of both the spatial distributions and magnitude of the monthly SM. All reanalysis products tend to overestimate soil moisture in all regions but have higher correlations than the remote sensing product except in Northwest China. The largest inconsistency is found in southern Northeast China region, with an unbiased root mean square error (ubRMSE) value larger than 0.04. However, all products exhibit certain weaknesses in representing the interannual variation in SM. The largest relative bias of 144.4 % is found for the ERA-Interim SM product under extreme and severe wet conditions in northeastern China, and the lowest relative bias is found for the ESA CCI SM product, with the minimum of 0.48 % under extreme and severe wet conditions in northwestern China. Decomposing mean square errors suggests that the bias terms are the dominant contribution for all products, and the correlation term is large for ESA CCI. As a result, the ESA CCI SM product is a good option for long-term hydrometeorological applications on the Chinese mainland. ERA5 is also a promising product, especially in northern and northwestern China in terms of low bias and high correlation coefficient. This long-term intercomparison study provides clues for SM product enhancement and further hydrological applications.


BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e045410
Author(s):  
Yibing Ruan ◽  
Stephen D Walter ◽  
Priyanka Gogna ◽  
Christine M Friedenreich ◽  
Darren R Brenner

BackgroundThe population attributable fraction (PAF) is an important metric for estimating disease burden associated with causal risk factors. In an International Agency for Research on Cancer working group report, an approach was introduced to estimate the PAF using the average of a continuous exposure and the incremental relative risk (RR) per unit. This ‘average risk’ approach has been subsequently applied in several studies conducted worldwide. However, no investigation of the validity of this method has been done.ObjectiveTo examine the validity and the potential magnitude of bias of the average risk approach.MethodsWe established analytically that the direction of the bias is determined by the shape of the RR function. We then used simulation models based on a variety of risk exposure distributions and a range of RR per unit. We estimated the unbiased PAF from integrating the exposure distribution and RR, and the PAF using the average risk approach. We examined the absolute and relative bias as the direct and relative difference in PAF estimated from the two approaches. We also examined the bias of the average risk approach using real-world data from the Canadian Population Attributable Risk of Cancer study.ResultsThe average risk approach involves bias, which is underestimation or overestimation with a convex or concave RR function (a risk profile that increases more/less rapidly at higher levels of exposure). The magnitude of the bias is affected by the exposure distribution as well as the value of RR. This approach is approximately valid when the RR per unit is small or the RR function is approximately linear. The absolute and relative bias can both be large when RR is not small and the exposure distribution is skewed.ConclusionsWe recommend that caution be taken when using the average risk approach to estimate PAF.


2021 ◽  
Author(s):  
Mickaël Lalande ◽  
Martin Ménégoz ◽  
Gerhard Krinner ◽  
Kathrin Naegeli ◽  
Stefan Wunderle

Abstract. Climate change over High Mountain Asia (HMA, including the Tibetan Plateau) is investigated over the period 1979–2014 and in future projections following the four shared socioeconomic pathways SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. The skill of 26 CMIP6 models is estimated for near-surface air temperature, snow cover extent and total precipitation, and 10 of them are used to describe their projections until 2100. Similarly to previous CMIP models, this new generation of GCMs shows a mean cold bias over this area reaching −1.9 [−8.2 to 2.9] °C (90 % confidence interval) in comparison with the CRU observational dataset, associated with a snow cover mean overestimation of 12 [−13 to 43] %, corresponding to a relative bias of 52 [−53 to 183] % in comparison with the NOAA CDR satellite dataset. The temperature and snow cover model biases are more pronounced in winter. Simulated precipitation rates are overestimated by 1.5 [0.3 to 2.9] mm day−1, corresponding to a relative bias of 143 [31 to 281] %, but this might be an apparent bias caused by the undercatch of solid precipitation in the APHRODITE observational reference. For most models, the cold surface bias is associated with an overestimation of snow cover extent, but this relationship does not hold for all models, suggesting that the processes of the origin of the biases can differ from one model to another one. A significant correlation between snow cover bias and surface elevation is found, and to a lesser extent between temperature bias and surface elevation, highlighting the model weaknesses at high elevation. The models performing the best for temperature are not necessarily the most skillful for the other variables, and there is no clear relationship between model resolution and model skill. This highlights the need for a better understanding of the physical processes driving the climate in this complex topographic area, as well as for further parameterization developments adapted to such areas. A dependency of the simulated past trends to the model biases is found for some variables and seasons, however, some highly biased models fall within the range of observed trends suggesting that model bias is not a robust criterion to discard models in trend analysis. The HMA median warming simulated over 2081–2100 with respect to 1995–2014 ranges from 1.9 [1.2 to 2.7] °C for SSP1-2.6 to 6.5 [4.9 to 9.0] °C for SSP5-8.5. This general warming is associated with a relative median snow cover extent decrease from −9.4 [−16.4 to −5.0] % to −32.2 [−49.1 to −25.0] % and a relative median precipitation increase from 8.5 [4.8 to 18.2] % to 24.9 [14.4 to 48.1] % by the end of the century in these respective scenarios. The warming is 11 % higher over HMA than over the other Northern Hemisphere continental surfaces excluding the Arctic area. Seasonal temperature, snow cover and precipitation changes over HMA show a linear relationship with the Global Surface Air Temperature (GSAT), except for summer snow cover that shows a slower decrease at strong levels of GSAT.


2021 ◽  
Vol 10 (6) ◽  
pp. 2847-2864
Author(s):  
N. Idiou ◽  
F. Benatia

Given $(Z_{i},\delta _{i})=\left\{ \min (T_{i},C_{i}),I_{(T_{i}<C_{i})_{i=1,2}}\right\} ,$ as dependent or independent right-censored variables, general formulas are proven for a semi-parametric estimation of the proposed method. As a logical continuation of results established by N.IDIOU et al 2021 \cite{ref16}, a new estimator of $\tilde{C}$ is proposed by considering that the underlying copula is Archimedean, under singly censoring data. As an application, two Archimedean copulas models have been chosen to illustrate our theoretical results. A simulation study follows, which sheds light on the behavior of the process estimation method shown that the proposed estimator performs well in terms of relative bias and RMSE. The methodology of the proposed estimator is also illustrated by using lifetime data from the Diabetic Retinopathy Study, where its efficiency and robustness are observed.


2021 ◽  
Author(s):  
Mahesh Kumar Sha ◽  
Bavo Langerock ◽  
Jean-François L. Blavier ◽  
Thomas Blumenstock ◽  
Tobias Borsdorff ◽  
...  

Abstract. The Sentinel-5 Precursor (S5P) mission with the TROPOspheric Monitoring Instrument (TROPOMI) onboard has been measuring solar radiation backscattered by the Earth's atmosphere and its surface since its launch on 13 October 2017. Methane (CH4) and carbon monoxide (CO) data with a spatial resolution (initially 7 x 7 km2, upgraded to 5.5 x 7 km2 on 6th of August 2019) have been retrieved from shortwave infrared (SWIR) and near-infrared (NIR) measurements since the end of November 2017 and made available to the experts for early validation and quality checks before the official product release. In this paper, we present for the first time the S5P CH4 and CO validation results (covering a period from November 2017 to September 2020) using global Total Carbon Column Observing Network (TCCON) and Infrared Working Group of the Network for the Detection of Atmospheric Composition Change (NDACC-IRWG) network data, accounting for a priori alignment and smoothing uncertainties in the validation, and testing the sensitivity of validation results towards the application of advanced co-location criteria.We found that the required bias (systematic error) of 1.5 % and random error of 1 % for the S5P standard and bias-corrected methane data are met for measurements over land surfaces with pixels having quality assurance (QA) value > 0.5. The systematic difference between the S5P standard XCH4 and TCCON data is on average −0.69 ± 0.73 %. The systematic difference changes to a value of −0.25 ± 0.57 % for the S5P bias-corrected XCH4 data. We found a correlation of above 0.6 for most stations, which is mostly dominated by the seasonal cycle. The contributions of smoothing uncertainty at the individual stations are estimated and found to be dependent on the location. The highest contribution of the smoothing uncertainty is observed for mid-latitude TCCON stations and high latitude stations for NDACC. A seasonal dependency of the relative bias is seen. We observe a high bias during the springtime measurements at high SZA and a decreasing bias with increasing SZA for the rest of the year.We found that the required bias (systematic error) of 15 % and random error of < 10 % for the S5P carbon monoxide data are met in general for measurements over all surfaces with pixels having quality assurance value of > 0.5. There are a few stations where this is not the case, mostly due to co-location mismatches and the limited availability of co-located data. We compared the S5P XCO data with respect to standard TCCON XCO and unscaled TCCON XCO (without application of the empirical scaling factor) data sets. The systematic difference between the S5P XCO and the TCCON data is on average 9.14 ± 3.33 % (standard TCCON XCO data) and 2.36 ± 3.22 % (unscaled TCCON XCO data). We found that the systematic difference between the S5P CO column and NDACC CO column data (excluding two stations that were obvious outliers) is on average 6.44 ± 3.79 %. We found a correlation of above 0.9 for most TCCON and NDACC stations indicating that the temporal variations in CO column captured by the ground-based instruments are reproduced very similarly by the S5P CO column. The contribution of smoothing uncertainty at the individual stations is estimated and found to be significant. They are found to be dependent on the location with large changes seen for stations located in the Southern Hemisphere as compared to the Northern Hemisphere and at highly polluted stations. A cone co-location criterion, which gives a better match between the ground-based instrument's line-of-sight and satellite pixels, seems to give better results for high latitude stations and stations located close to emission sources. The validation results for the clear-sky and cloud cases of S5P pixels are comparable to the validation results including all pixels with quality assurance value of > 0.5. We observe that the relative bias increases with increasing SZA. We estimated this increase is about 10 % over the complete range of measurement SZAs.The study shows the high quality of S5P CH4 and CO data by validating the products against reference global TCCON and NDACC stations covering a wide range of latitudinal bands, atmospheric conditions, and surface conditions.


Author(s):  
Prathiba Natesan Batley ◽  
Larry Vernon Hedges

AbstractAlthough statistical practices to evaluate intervention effects in single-case experimental design (SCEDs) have gained prominence in recent times, models are yet to incorporate and investigate all their analytic complexities. Most of these statistical models incorporate slopes and autocorrelations, both of which contribute to trend in the data. The question that arises is whether in SCED data that show trend, there is indeterminacy between estimating slope and autocorrelation, because both contribute to trend, and the data have a limited number of observations. Using Monte Carlo simulation, we compared the performance of four Bayesian change-point models: (a) intercepts only (IO), (b) slopes but no autocorrelations (SI), (c) autocorrelations but no slopes (NS), and (d) both autocorrelations and slopes (SA). Weakly informative priors were used to remain agnostic about the parameters. Coverage rates showed that for the SA model, either the slope effect size or the autocorrelation credible interval almost always erroneously contained 0, and the type II errors were prohibitively large. Considering the 0-coverage and coverage rates of slope effect size, intercept effect size, mean relative bias, and second-phase intercept relative bias, the SI model outperformed all other models. Therefore, it is recommended that researchers favor the SI model over the other three models. Research studies that develop slope effect sizes for SCEDs should consider the performance of the statistic by taking into account coverage and 0-coverage rates. These helped uncover patterns that were not realized in other simulation studies. We underline the need for investigating the use of informative priors in SCEDs.


2021 ◽  
Author(s):  
Soumen Dey ◽  
Richard Bischof ◽  
Pierre P. A. Dupont ◽  
Cyril Milleret

AbstractSpatial capture-recapture (SCR) is now used widely to estimate wildlife densities. At the core of SCR models lies the detection function, linking individual detection probability to the distance from its latent activity center. The most common function (half-normal) assumes a bivariate normal space use and consequently detection pattern. This is likely an oversimplification and misrepresentation of real-life animal space use patterns, but studies have reported that density estimates are relatively robust to misspecified detection functions. However, information about consequences of such misspecification on space use parameters (e.g. home range area), as well as diagnostic tools to reveal it are lacking.We simulated SCR data under six different detection functions, including the half-normal, to represent a wide range of space use patterns. We then fit three different SCR models, with the three simplest detection functions (half-normal, exponential and half-normal plateau) to each simulated data set. We evaluated the consequences of misspecification in terms of bias, precision and coverage probability of density and home range area estimates. We also calculated Bayesian p-values with respect to different discrepancy metrics to assess whether these can help identify misspecifications of the detection function.We corroborate previous findings that density estimates are robust to misspecifications of the detection function. However, estimates of home range area are prone to bias when the detection function is misspecified. When fitted with the half-normal model, average relative bias of 95% kernel home range area estimates ranged between −25% and 26% depending on the misspecification. In contrast, the half-normal plateau model (an extension of the half-normal) returned average relative bias that ranged between −26% and −4%. Additionally, we found useful heuristic patterns in Bayesian p-values to diagnose the misspecification in detection function.Our analytical framework and diagnostic tools may help users select a detection function when analyzing empirical data, especially when space use parameters (such as home range area) are of interest. We urge development of additional custom goodness of fit diagnostics for Bayesian SCR models to help practitioners identify a wider range of model misspecifications.


2021 ◽  
Vol 87 (87(03)) ◽  
pp. 239-246
Author(s):  
José Luis Martín-Calderón

– Background: The aim of this study is to define the interference of biotin in several endocrine, tumor marker, and vitamin assays performed by an electrochemiluminescence method, trying to determinate the critical level that causes biotin interference. – Material and methods: Working biotin solutions were prepared in phosphate-buffered saline (PBS) at different concentrations (10000, 7500, 5000, 2500, 1250, 625, and 312.5 ng/mL), which were spiked on the samples to obtain final concentrations ten-fold lower. Each serum biotin dilution was tested in triplicate, using at least two levels of analytes. Determinations of several endocrine, vitamins, tumor and bone markers were carried-out with eletrochemilumenescent immunoassays on the cobas e801 and cobas e411. Comparison between the results obtained by analyzing the biotin-spiked samples and the reference PBS-spiked samples was performed using Microsoft Excel. The relative bias with the interfering-free specimen was calculated for each biotin concentration. Interference was considered significant when the relative bias exceeded 10%. Glick´s interferographs were performed plotting the percentage of change vs. biotin concentration. – Results: Analyte concentrations were spuriously decreased in 12 sandwich immunoassays and falsely increased in 11 competitive immunoassays. However thyrotropin and CA 15.3 antigen were not significantly affected. – Conclusions: Except CA 15.3 and TSH, the methods tested were susceptible to biotin interference. Falsely low values occurred in sandwich assays and high bias in competitive assays. Clinicians and laboratorians should be aware of the medical importance of biotin interference as a cause of misdiagnosis and incorrect treatment.


Sign in / Sign up

Export Citation Format

Share Document