scholarly journals Statistical Inferences on Odd Fréchet Power Function Distribution

Author(s):  
Muhammad Ahsan ul Haq ◽  
Mohammed Albassam ◽  
Muhammad Aslam ◽  
Sharqa Hashmi

This article introduces a new unit distribution namely odd Fréchet power (OFrPF) distribution. Numerous properties of the proposed model including reliability analysis, moments, and Rényi Entropy for the proposed distribution. The parameters of the OFrPF distribution are obtained using different approaches such as maximum likelihood, least squares, weighted least squares, percentile, Cramer-von Mises, Anderson-Darling. Furthermore, a simulation was performed to study the performance of the suggested model. We also perform a simulation study to analyze the performances of estimation methods derived. The applications are used to show the practicality of OFrPF distribution using two real data sets. OFrPF distribution performed better than other competitive models.

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 135 ◽  
Author(s):  
Ahmed Z. Afify ◽  
Osama Abdo Mohamed

In this paper, we study a new flexible three-parameter exponential distribution called the extended odd Weibull exponential distribution, which can have constant, decreasing, increasing, bathtub, upside-down bathtub and reversed-J shaped hazard rates, and right-skewed, left-skewed, symmetrical, and reversed-J shaped densities. Some mathematical properties of the proposed distribution are derived. The model parameters are estimated via eight frequentist estimation methods called, the maximum likelihood estimators, least squares and weighted least-squares estimators, maximum product of spacing estimators, Cramér-von Mises estimators, percentiles estimators, and Anderson-Darling and right-tail Anderson-Darling estimators. Extensive simulations are conducted to compare the performance of these estimation methods for small and large samples. Four practical data sets from the fields of medicine, engineering, and reliability are analyzed, proving the usefulness and flexibility of the proposed distribution.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 2060
Author(s):  
Mashail M. AL Sobhi

The present paper proposes a new distribution called the inverse power logistic exponential distribution that extends the inverse Weibull, inverse logistic exponential, inverse Rayleigh, and inverse exponential distributions. The proposed model accommodates symmetrical, right-skewed, left-skewed, reversed-J-shaped, and J-shaped densities and increasing, unimodal, decreasing, reversed-J-shaped, and J-shaped hazard rates. We derive some mathematical properties of the proposed model. The model parameters were estimated using five estimation methods including the maximum likelihood, Anderson–Darling, least-squares, Cramér–von Mises, and weighted least-squares estimation methods. The performance of these estimation methods was assessed by a detailed simulation study. Furthermore, the flexibility of the introduced model was studied using an insurance real dataset, showing that the proposed model can be used to fit the insurance data as compared with twelve competing models.


2021 ◽  
Vol 20 ◽  
pp. 135-146
Author(s):  
B. Hossieni ◽  
M. Afshari ◽  
M. Alizadeh ◽  
H. Karamikabir

n many applied areas there is a clear need for the extended forms of the well-known distributions.The new distributions are more flexible to model real data that present a high degree of skewness and kurtosis, such that each one solves a particular part of the classical distribution problems. In this paper, a new two-parameter Generalized Odd Gamma distribution, called the (GOGaU) distribution, is introduced and the fitness capability of this model are investigated. Some structural properties of the new distribution are obtained. The different methods including: Maximum likelihood estimators, Bayesian estimators (posterior mean and maximum a posterior), least squares estimators, weighted least squares estimators, Cramér-von-Mises estimators, Anderson-Darling and right tailed Anderson-Darling estimators are discussed to estimate the model parameters. In order to perform the applications, the importance and flexibility of the new model are also illustrated empirically by means of two real data sets. For simulation Stan and JAGS software were utilized in which we have built the GOGaU JAGS module


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246935
Author(s):  
Fiaz Ahmad Bhatti ◽  
G. G. Hamedani ◽  
Mustafa Ç. Korkmaz ◽  
Wenhui Sheng ◽  
Azeem Ali

In this study, a new flexible lifetime model called Burr XII moment exponential (BXII-ME) distribution is introduced. We derive some of its mathematical properties including the ordinary moments, conditional moments, reliability measures and characterizations. We employ different estimation methods such as the maximum likelihood, maximum product spacings, least squares, weighted least squares, Cramer-von Mises and Anderson-Darling methods for estimating the model parameters. We perform simulation studies on the basis of the graphical results to see the performance of the above estimators of the BXII-ME distribution. We verify the potentiality of the BXII-ME model via monthly actual taxes revenue and fatigue life applications.


2017 ◽  
Vol 18 (2) ◽  
pp. 0233 ◽  
Author(s):  
Hassan S Bakouch ◽  
Sanku Dey ◽  
Pedro Luiz Ramos ◽  
Francisco Louzada

In this paper, we have considered different estimation methods of the unknown parameters of a binomial-exponential 2 distribution. First, we briefly describe different frequentist approaches such as the method of moments, modified moments, ordinary least-squares estimation, weightedleast-squares estimation, percentile, maximum product of spacings, Cramer-von Mises type minimum distance, Anderson-Darling and Right-tail Anderson-Darling, and compare them using extensive numerical simulations. We apply our proposed methodology to three real data sets related to the total monthly rainfall during April, May and September at Sao Carlos, Brazil.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1684 ◽  
Author(s):  
Maha A. D. Aldahlan ◽  
Ahmed Z. Afify

In this paper, we studied the problem of estimating the odd exponentiated half-logistic exponential (OEHLE) parameters using several frequentist estimation methods. Parameter estimation provides a guideline for choosing the best method of estimation for the model parameters, which would be very important for reliability engineers and applied statisticians. We considered eight estimation methods, called maximum likelihood, maximum product of spacing, least squares, Cramér–von Mises, weighted least squares, percentiles, Anderson–Darling, and right-tail Anderson–Darling for estimating its parameters. The finite sample properties of the parameter estimates are discussed using Monte Carlo simulations. In order to obtain the ordering performance of these estimators, we considered the partial and overall ranks of different estimation methods for all parameter combinations. The results illustrate that all classical estimators perform very well and their performance ordering, based on overall ranks, from best to worst, is the maximum product of spacing, maximum likelihood, Anderson–Darling, percentiles, weighted least squares, least squares, right-tail Anderson–Darling, and Cramér–von-Mises estimators for all the studied cases. Finally, the practical importance of the OEHLE model was illustrated by analysing a real data set, proving that the OEHLE distribution can perform better than some well known existing extensions of the exponential distribution.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Said Alkarni ◽  
Ahmed Z. Afify ◽  
I. Elbatal ◽  
M. Elgarhy

This paper proposes the new three-parameter type I half-logistic inverse Weibull (TIHLIW) distribution which generalizes the inverse Weibull model. The density function of the TIHLIW can be expressed as a linear combination of the inverse Weibull densities. Some mathematical quantities of the proposed TIHLIW model are derived. Four estimation methods, namely, the maximum likelihood, least squares, weighted least squares, and Cramér–von Mises methods, are utilized to estimate the TIHLIW parameters. Simulation results are presented to assess the performance of the proposed estimation methods. The importance of the TIHLIW model is studied via a real data application.


2019 ◽  
Vol 23 (Suppl. 6) ◽  
pp. 1839-1847
Author(s):  
Caner Tanis ◽  
Bugra Saracoglu

In this paper, it is considered the problem of estimation of unknown parameters of log-Kumaraswamy distribution via Monte-Carlo simulations. Firstly, it is described six different estimation methods such as maximum likelihood, approximate bayesian, least-squares, weighted least-squares, percentile, and Cramer-von-Mises. Then, it is performed a Monte-Carlo simulation study to evaluate the performances of these methods according to the biases and mean-squared errors of the estimators. Furthermore, two real data applications based on carbon fibers and the gauge lengths are presented to compare the fits of log-Kumaraswamy and other fitted statistical distributions.


Author(s):  
Mahmoud afshari Afshari ◽  
Mosa Abdi ◽  
Hamid Karamikabir ◽  
Mahdiye Mozafari ◽  
Morad Alizadeh

The new distributions are very useful in describing real data sets, because these distributions are more flexible to model real data that present a high degree of skewness and kurtosis. The choice of the best-suited statistical distribution for modeling data is very important.In this paper, A new class of distributions called the {\it  New odd log-logistic generalized half-normal} (NOLL-GHN) family with four parameters is introduced and studied. This model contains  sub-models  such as  half-normal (HN), generalized half-normal (GHN )and odd log-logistic generalized half-normal (OLL-GHN) distributions.some statistical properties such as moments and moment generating function have been calculated.The Biases and MSE's of  estimator methods such as maximum likelihood estimators ,  least squares estimators, weighted least squares estimators,Cramer-von-Mises estimators, Anderson-Darling estimators and right tailed Anderson-Darling estimators  are calculated.The fitness capability of this model has been investigated  by fitting this model and others based on real data sets. The maximum likelihood  estimators are  assessed with simulated  real data from proposed model. We present the simulation in order to test validity of maximum likelihood estimators.


2021 ◽  
Vol 21 (3) ◽  
pp. 659-668
Author(s):  
CANER TANIŞ ◽  
KADİR KARAKAYA

In this paper, we compare the methods of estimation for one parameter lifetime distribution, which is a special case of inverse Gompertz distribution. We discuss five different estimation methods such as maximum likelihood method, least-squares method, weighted least-squares method, the method of Anderson-Darling, and the method of Crámer–von Mises. It is evaluated the performances of these estimators via Monte Carlo simulations according to the bias and mean-squared error. Furthermore, two real data applications are performed.


Sign in / Sign up

Export Citation Format

Share Document