Depositional and Tectonic History of Tertiary Sequence on Continental Margin of British Columbia: ABSTRACT

AAPG Bulletin ◽  
1973 ◽  
Vol 57 ◽  
Author(s):  
B. E. B. Cameron, D. L. Tiffin
2012 ◽  
Vol 49 (7) ◽  
pp. 796-817 ◽  
Author(s):  
E.H. Brown

The San Juan Islands – northwest Cascades thrust system in Washington and British Columbia is composed of previously accreted terranes now assembled as four broadly defined composite nappes stacked on a continental footwall of Wrangellia and the Coast Plutonic Complex. Emplacement ages of the nappe sequence are interpreted from zircon ages, field relations, and lithlogies, to young upward. The basal nappe was emplaced prior to early Turonian time (∼93 Ma), indicated by the occurrence of age-distinctive zircons from this nappe in the Sidney Island Formation of the Nanaimo Group. The emplacement age of the highest nappe in the thrust system postdates 87 Ma detrital zircons within the nappe. The nappes bear high-pressure – low-temperature (HP–LT) mineral assemblages indicative of deep burial in a thrust wedge; however, several features indicate that metamorphism occurred prior to nappe assembly: metamorphic discontinuities at nappe boundaries, absence of HP–LT assemblages in the footwall to the nappe pile, and absence of significant unroofing detritus in the Nanaimo Group. A synorogenic relationship of the thrust system to the Nanaimo Group is evident from mutually overlapping ages and by conglomerates of Nanaimo affinity that lie within the nappe pile. From the foregoing relations, and broader Cordilleran geology, the tectonic history of the nappe terranes is interpreted to involve initial accretion and subduction-zone metamorphism south of the present locality, uplift and exhumation, orogen-parallel northward transport of the nappes as part of a forearc sliver, and finally obduction at the present site over the truncated south end of Wrangellia and the Coast Plutonic Complex.


1982 ◽  
Vol 19 (4) ◽  
pp. 767-788 ◽  
Author(s):  
E. E. Davis ◽  
R. P. Riddihough

A compilation of published and new geophysical data from the Winona Basin off northern Vancouver Island has allowed a detailed interpretation of the sedimentary and tectonic history of the region to be made. The basin is forming as a result of the asymmetric subsidence of a recently isolated lithospheric block that is slowly converging with the continental margin. The crust beneath the basin is young (1–5 Ma, increasing in age from southeast to northwest) and of normal oceanic thickness. It is virtually non-magnetic, however, probably because of its having been rapidly buried by turbidite sedimentation. Subsidence of the basin and uplift of the Paul Revere Ridge began in the Early Pleistocene (ca. 1.8 Ma) and, since that time, up to 8 km of turbidite sediments has accumulated in the basin. The nature of the fanning of the deposits suggests that the basin has been kept full throughout its history; the minimum average supply rate necessary to accomplish this is about 70 × 106 Mg year−1. This Pleistocene average is considerably greater than the present discharge rates of any of the major rivers in the area. Subsidence, indicated by the large gravity anomaly over the basin (−130 × 10−5 m s−2 (−130 mGal)) and by the tilting of sediment layers at depth, and convergence, indicated by folding of sediments throughout the basin fill, appear to be continuing at the present time. From the timing of various events associated with the formation of the basin, we conclude that the recent reorganization of spreading and the recent relocation of the Pacific–Explorer–America triple junction have occurred in response to the demands of local small plate motions that are controlled by the interaction of the small plates with the continental margin.


Sign in / Sign up

Export Citation Format

Share Document