tectonic history
Recently Published Documents


TOTAL DOCUMENTS

896
(FIVE YEARS 139)

H-INDEX

65
(FIVE YEARS 5)

Solid Earth ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 85-115
Author(s):  
Jean-Baptiste P. Koehl ◽  
Craig Magee ◽  
Ingrid M. Anell

Abstract. The Svalbard Archipelago consists of three basement terranes that record a complex Neoproterozoic–Phanerozoic tectonic history, including four contractional events (Grenvillian, Caledonian, Ellesmerian, and Eurekan) and two episodes of collapse- to rift-related extension (Devonian–Carboniferous and late Cenozoic). Previous studies suggest that these three terranes likely accreted during the early to mid-Paleozoic Caledonian and Ellesmerian orogenies. Yet recent geochronological analyses show that the northwestern and southwestern terranes of Svalbard both record an episode of amphibolite (–eclogite) facies metamorphism in the latest Neoproterozoic, which may relate to the 650–550 Ma Timanian Orogeny identified in northwestern Russia, northern Norway, and the Russian Barents Sea. However, discrete Timanian structures have yet to be identified in Svalbard and the Norwegian Barents Sea. Through analysis of seismic reflection, as well as regional gravimetric and magnetic data, this study demonstrates the presence of continuous thrust systems that are several kilometers thick, NNE-dipping, deeply buried, and extend thousands of kilometers from northwestern Russia to northeastern Norway, the northern Norwegian Barents Sea, and the Svalbard Archipelago. The consistency in orientation and geometry, as well as apparent linkage between these thrust systems and those recognized as part of the Timanian Orogeny in northwestern Russia and Novaya Zemlya, suggests that the mapped structures are likely Timanian. If correct, these findings would imply that Svalbard's three basement terranes and the Barents Sea were accreted onto northern Norway during the Timanian Orogeny and should hence be attached to Baltica and northwestern Russia in future Neoproterozoic–early Paleozoic plate tectonics reconstructions. In the Phanerozoic, the study suggests that the interpreted Timanian thrust systems represent major preexisting zones of weakness that were reactivated, folded, and overprinted by (i.e., controlled the formation of new) brittle faults during later tectonic events. These faults are still active at present and can be linked to folding and offset of the seafloor.


2021 ◽  
Author(s):  
Yizhou Wang ◽  
Liran Goren ◽  
Dewen Zheng ◽  
Huiping Zhang

Abstract. The long profile of rivers is widely considered as a recorded of tectonic uplift rate. Knickpoints form in response to rate changes and faster rates produce steeper channel segments. However, when the exponent relating fluvial incision to river slope, n, is not unity, the links between tectonic rates and channel profile are complicated by channel dynamics that consume and form river segments. Here, we explore non-linear cases leading to channel segment consumption and develop a Lagrangian analytic model for knickpoint migration. We derive a criterion for knickpoint preservation and merging, and develop a forward analytic model that resolves knickpoint and long profile evolution before and after knickpoint merging. We further propose a linear inverse scheme to infer tectonic history from river profiles when all knickpoints are preserved. Our description provides a new framework to explore the links between tectonic uplift rates and river profile evolution when n is not unity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samuel C. Bernardes ◽  
Kristina von Rintelen ◽  
Thomas von Rintelen ◽  
Almir R. Pepato ◽  
Timothy J. Page ◽  
...  

AbstractThe Indian Ocean has a complex geological history that has drawn the attention of naturalists for almost a century now. Due to its tectonic history, many geological elements and processes have been evoked to explain the exchange of species between landmasses. Here, we revisited previous studies on twenty-three taxa to investigate trends across time since the Gondwana breakup. We investigated these datasets by applying a time-calibrated Bayesian framework to them and reconstructing their ancestral ranges. We conclude that ecological transformations have presented opportunities for the establishment of migrants. The role of donating and receiving migrants has shifted several times according to these transformations. Time-specific trends show weak evidence for the stepping-stones commonly suggested as physical routes between landmasses. However, before its collision with Asia, India may have served as an intermediary for such exchanges.


2021 ◽  
pp. SP521-2021-138
Author(s):  
Jun Wang ◽  
Chang-Fu Zhou ◽  
Fred Jourdan ◽  
Su-Chin Chang

AbstractStarting in the early 1950s, paleontologists began to discover a wide range of Cretaceous terrestrial fossils in the Laiyang, Qingshan, and Wangshi groups of the Jiaolai Basin which resides in the eastern part of the Shandong Peninsula of northern China. Significant specimens from these deposits include various dinosaur eggs, footprints, and fossils including hadrosauroids, tyrannosaurids, and ankylosaurids. These expanded understanding of evolution, biodiversity, and paleoecology in East Asia. While many examples of the Jehol Biota from this area are not well constrained in terms of their stratigraphy and geochronology, previous studies have generally suggested that fossils from this region represent the second or third phase of Jehol Biota development. This paper reviews fossils, stratigraphic correlations, tectonic history, and age estimates for the less well-studied outcrops of the Shandong Peninsula that host Jehol Biota. We report three new 40Ar/39Ar ages for the Qingshang Group and discuss how these somewhat imprecise ages still constrain chronostratigraphic interpretation for the fossil-rich units.


2021 ◽  
Author(s):  
Samuel Chagas Bernardes ◽  
Kristina von Rintelen ◽  
Thomas von Rintelen ◽  
Almir Rogerio Pepato ◽  
Timothy J Page ◽  
...  

The Indian Ocean has a complex geological history that has drawn the attention of naturalists for almost a century now. Due to its tectonic history, many geological elements and processes have been evoked to explain the exchange of species between landmasses. Here, we revisited previous studies on twenty-three taxa to investigate trends across time since the Gondwana breakup. We investigated these datasets by applying a time-calibrated Bayesian framework to them and reconstructing their ancestral ranges. We conclude that ecological transformations have presented opportunities for the establishment of migrants. The role of donating and receiving migrants has shifted several times according to these transformations. Time-specific trends show weak evidence for the stepping-stones commonly suggested as physical routes between landmasses. However, before its collision with Asia, India may have served as an intermediary for such exchanges.


2021 ◽  
Vol 929 (1) ◽  
pp. 012008
Author(s):  
I P Sidorova

Abstract This paper presents an integrated geophysical study of the Western Central Asia (WCA) in the Uzbekistan area. It presents new interpretations of deep seismic sounding (DSS) data and new analyses of potential fields data. An integrated model of the physical properties and lithosphere structures displays distinct features that are related to tectonic history of the study WCA-Darius area. Task-oriented complex geological and geophysical research revealed in the lithosphere of western Uzbekistan series of crust blocks with abnormal petrophysical characteristics and established some correlation dependences between the distribution and placement of these objects (in plan) with deposits of minerals.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1206
Author(s):  
Qingshuang Wang ◽  
Yanlan Wei ◽  
Yanchen Yang ◽  
Hu Peng

Yuejinshan copper–gold orebodies form a hydrothermal deposit located southwest of the Wandashan massif in the western Pacific oceanic tectonic regime. The orebodies are veins and lenses in granite porphyry and skarn or contact zones between these rocks. Early Cretaceous Yuejinshan magmatism provides critical evidence for regional mineralization and tectonic history. In this work, whole-rock major and trace elements and zircon U–Pb data for Yuejinshan granitic intrusions were studied to investigate the geochronological framework, petrogenesis, tectonic implications, and metallogenesis. Granodiorites are calc-alkaline and have geochemical characteristics that indicate affinities with subduction-related crust–mantle magmas derived from partial melting of a mantle wedge and subducted sediments metasomatized by subduction-related fluids. These magmas have experienced fractional crystallization and assimilated crustal materials. Granite porphyries, monzogranites, and quartz diorites are peraluminous, geochemically similar to remelted granites, and derived from partial melting of the crust. Zircon U–Pb LA-ICP-MS data and previous ages indicate that the granitoids were emplaced in the Early Cretaceous. We propose that mineralization mainly occurred at 130 Ma, while magmatism during 116–109 Ma triggered the enrichment of copper and gold in this deposit. Magmatism of different geological ages overlapped spatially and formed the Yuejinshan copper–gold deposit in an active continental margin setting related to the subduction of the Paleo-Pacific Plate.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Caroline M. Eakin

AbstractThe Australian continental crust preserves a rich geological history, but it is unclear to what extent this history is expressed deeper within the mantle. Here an investigation of Quasi-Love waves is performed to detect scattering of seismic surface waves at mantle depths (between 100–200 km) by lateral gradients in seismic anisotropy. Across Australasia 275 new observations of Quasi-Love waves are presented. The inferred scattering source and lateral anisotropic gradients are preferentially located either near the passive continental margins, or near the boundaries of major geological provinces within Australia. Pervasive fossilized lithospheric anisotropy within the continental interior is implied, on a scale that mirrors the crustal geology at the surface, and a strong lithosphere that has preserved this signal over billions of years. Along the continental margins, lateral anisotropic gradients may indicate either the edge of the thick continental lithosphere, or small-scale dynamic processes in the asthenosphere below.


Author(s):  
Fajar Rizki Widiatmoko ◽  
Mochammad Aziz ◽  
Irwan Firmansyah

Mapping is the activity of collecting data from an area to be mapped, in the context of geology mapping means collecting data that includes descriptions of rocks, rock structures, rock positions, structure measurements (plunge/trend, pitch, microfold), rock thickness measurements, rock sampling and sketches. landscape, covering an area to be mapped. Research in the area of Gunungbatu and its surroundings, Bodeh District, Pemalang Regency, Central Java Province with the aim of knowing and knowing that it is in the research area by reconstructing the history of formation or geomorphological history, merely tectonic history in space and time, reconstructing geological history based on micropaleontological analysis. Based on the analysis carried out, it was found that the geomorphological units of the study area were divided into 5, namely the Gunungbatu Syncline Hills Unit, the Kali Bodas Anticline Valley Unit, the Girimulya Syncline Hills Unit, the Cenggiri Homocline Hills Unit and the Kebubung Homocline Valley Unit. The geology of the study area consists of two unofficial rock units in order from oldest to youngest, namely the claystone-sandstone unit and the sandstone-claystone unit. The geological structures of the pinpoint folds and faults are Mount Ketos Syncline, Kali Bodas Anticline, Gapura Syncline, Pertapan Igir Syncline, Cenggiri River Rising Fault, Kebubung Dextral Fault, and Girimulya Dextral Fault. The geological history of the research area begins with the book Unit of Claystone in the Middle Miocene Environment in Upper Bathyal. Furthermore, after the claystone-sandstone units were deposited, during the Middle Miocene – Late Miocene in the Deep Neritic Environment, the sandstone-claystone units were deposited with a turbidite mechanism. As well as the geological resource potential of the research area in the form of river utilization in the form of chunks of igneous rock, river sand deposits and gold seepage. Meanwhile, the potential for geological disasters in the form of landslides.


2021 ◽  
pp. 21-34
Author(s):  
Steven J. Jaret* ◽  
Nicholas D. Tailby ◽  
Keiji G. Hammond ◽  
E. Troy Rasbury ◽  
Kathleen Wooton ◽  
...  

ABSTRACT Here we present an overview of the geology of the Manhattan Prong and a specific guide for field stops in northern Central Park. This guide is intended to provide a brief introduction to these complex rocks for researchers, undergraduate students, and teachers. Given the easy access to Central Park and numerous schools and institutions nearby, these outcrops provide ideal teaching outcrops for students of all levels. We also present new geochemical and isotopic results for the Manhattan and Hartland Schists. Previous work has focused primarily on field mapping, structural relationships, or infrastructure-related mapping, whereas our new geochemistry data allow for more detailed discussions of provenance and overall tectonic history of these rocks. Our results suggest that all of the rocks in northern Central Park (regardless of mapped unit) are derived from Laurentia.


Sign in / Sign up

Export Citation Format

Share Document