thrust system
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 47)

H-INDEX

30
(FIVE YEARS 1)

2021 ◽  
Vol 9 ◽  
Author(s):  
Hector Perea ◽  
Gülsen Ucarkus ◽  
Neal Driscoll ◽  
Graham Kent ◽  
Yuval Levy ◽  
...  

Identifying the offshore thrust faults of the Western Transverse Ranges that could produce large earthquakes and seafloor uplift is essential to assess potential geohazards for the region. The Western Transverse Ranges in southern California are an E-W trending fold-and-thrust system that extends offshore west of Ventura. Using a high-resolution seismic CHIRP dataset, we have identified the Last Glacial Transgressive Surface (LGTS) and two Holocene seismostratigraphic units. Deformation of the LGTS, together with onlapping packages that exhibit divergence and rotation across the active structures, provide evidence for three to four deformational events with vertical uplifts ranging from 1 to 10 m. Based on the depth of the LGTS and the Holocene sediment thickness, age estimates for the deformational events reveal a good correlation with the onshore paleoseismological results for the Ventura-Pitas Point fault and the Ventura-Avenue anticline. The observed deformation along the offshore segments of the Ventura-Pitas Point fault and Ventura-Avenue anticline trend diminishes toward the west. Farther north, the deformation along the offshore Red Mountain anticline also diminishes to the west with the shortening stepping north onto the Mesa-Rincon Creek fault system. These observations suggest that offshore deformation along the fault-fold structures moving westward is systematically stepping to the north toward the hinterland. The decrease in the amount of deformation along the frontal structures towards the west corresponds to an increase in deformation along the hinterland fold systems, which could result from a connection of the fault strands at depth. A connection at depth of the northward dipping thrusts to a regional master detachment may explain the apparent jump of the deformation moving west, from the Ventura-Pitas Point fault and the Ventura-Avenue anticline to the Red Mountain anticline, and then, from the Red Mountain anticline to the Mesa-Rincon Creek fold system. Finally, considering the maximum vertical uplift estimated for events on these structures (max ∼10 m), along with the potential of a common master detachment that may rupture in concert, this system could generate a large magnitude earthquake (>Mw 7.0) and a consequent tsunami.


2021 ◽  
Author(s):  
Rubén Díez Fernández ◽  
Jerónimo Matas ◽  
Ricardo Arenas ◽  
Luis Miguel Martín-Parra ◽  
Sonia Sánchez Martínez ◽  
...  

ABSTRACT The Porvenir serpentinites are an ∼600-m-thick body of meta-peridotites exposed in SW Iberia (Variscan Orogen). The serpentinites occur as a horse within a Carboniferous, out-of-sequence thrust system (Espiel thrust). This thrust juxtaposes the serpentinites and peri-Gondwanan strata onto younger peri-Gondwanan strata, with the serpentinites occupying an intermediate position. Reconstruction of the pre-Espiel thrust structure results in a vertical juxtaposition of terranes: Cambrian strata below, Porvenir serpentinites in the middle, and the strata at the footwall to the Espiel thrust culminating the tectonic pile. The reconstructed tectonic pile accounts for yet another major thrusting event, since a section of upper mantle (Porvenir serpentinites) was sandwiched between two tectonic slices of continental crust (a suture zone sensu lato). The primary lower plate to the suture is now overlying the upper plate due to the Espiel thrust. Lochkovian strata in the upper plate and the Devonian, NE-verging folds in the lower plate suggest SW-directed accretion of the lower plate during the Devonian, i.e., Laurussia-directed underthrusting for the closure of a Devonian intra-Gondwana basin. Obduction of the Porvenir serpentinites was a two-step process: one connected to the development of a Devonian suture zone, and another related to out-of-sequence thrusting that cut the suture zone and brought upward a tectonic slice of upper mantle rocks hosted in that suture. The primary Laurussia-dipping geometry inferred for this partially obducted suture zone fits the geometry, kinematics, and timing of the Late Devonian suture zone exposed in NW Iberia and may represent the continuation of such suture into SW Iberia.


2021 ◽  
pp. 1-11
Author(s):  
Zongyao Yang ◽  
Juxing Tang ◽  
Xiaoyan Zhao ◽  
Ying Wang ◽  
M. Santosh ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Changsheng Li ◽  
Hongwei Yin ◽  
Zhenyun Wu ◽  
Peng Zhou ◽  
Wei Wang ◽  
...  

The salt layer is critical for the structural deformation in the salt-bearing fold-and-thrust system, which not only acts as the efficient décollement layer but also flows to form salt tectonics. Kuqa Depression has a well-preserved thin-skinned fold-and-thrust system with the salt layer as the décollement. To investigate the effects of salt thickness on the structural deformation in the Kuqa Depression, three discrete element models with different salt thicknesses were constructed. The experiment without salt was controlled by several basal décollement dominant faults, forming several imbricate sheets. The experiments with salt developed the decoupled deformation with the salt layer as the upper décollement (subsalt, intrasalt, and suprasalt), significantly similar to the Kuqa Depression along the northern margin of Tarim Basin. Basal décollement dominant imbricated thrusts formed at the subsalt units, while the monoclinal structure formed at the suprasalt units. The decoupled deformation was also observed in the tectonic deformation graphics, distortional strain fields, and max shear stress fields. However, the salt layer was thickened in the thick salt model, and the salt thickness of the thin salt model varied slightly because the thin salt weakened the flowability of the salt. The lower max shear stress zone was easily formed in the distribution region of salt under the action of compression stress, which is conducive to the flow convergence of salt and the crumpled deformation of interlayer in salt. The results are well consistent with the natural characteristics of structural deformation in the Kuqa Depression. Our modeling result concerns the structural characteristics and evolution of salt-related structures and the effects of salt thickness on the structural deformation in the compressional stress field, which might be helpful for the investigations of salt-related structures in other salt-bearing fold-and-thrust belts.


2021 ◽  
pp. 1-13
Author(s):  
Erdinç Altuğ ◽  
Abdullah Türkmen

Significant progress has been made in recent years on personal air vehicles (PAVs), which offer independent and autonomous urban transportation. On-demand parcel delivery drones and heavy-lift drones are gaining serious attention. Although various designs for these systems have been put forward, they still have not reached sufficient maturity. The current systems provide somehow satisfactory operation, but many of these systems are limited in payload capacity and flight duration, and not suitable for future operations. In this paper, we propose a novel thrust system that uses multiple mini jet engines. Unlike electric motors, the jet engine thrust cannot vary rapidly. This led us to design and develop a thrust vectoring system for each jet engine. This proposed system has the potential to enable drones to carry more payload and achieve longer flight times. This paper discusses the design and modeling of the system as well as the stabilization algorithms that satisfactorily stabilize the proposed system. We presented that due to motor lag, thrust variations cannot stabilize the vehicle. We showed that the use of a thrust vectoring mechanism with LQR-based controller can overcome the effects of motor lag and stabilize the vehicle, successfully.


2021 ◽  
pp. 1-25
Author(s):  
Rashed Abdullah ◽  
Md. Shahadat Hossain ◽  
Md. Soyeb Aktar ◽  
Md. Soyeb Aktar ◽  
Mohammad Moinul Hossain ◽  
...  

The Bengal Basin accommodates an extremely thick Cenozoic sedimentary succession that derived from the uplifted Himalayan and Indo-Burman Orogenic Belts in response to the subduction of the Indian Plate beneath the Eurasian and Burmese plates. The Hatia Trough is a proven petroleum province that occupies much of the southern Bengal Basin. However, the style of deformation, kinematics, and possible timing of structural initiation in the Hatia Trough and the relationship of this deformation to the frontal fold-thrust system in the outer wedge (namely, the Chittagong Tripura Fold Belt) of the Indo-Burman subduction system to the east are largely unknown. Therefore, we carried out a structural interpretation across the eastern Hatia Trough and western Chittagong Tripura Fold Belt based on 2D seismic reflection data. Our result suggests that the syn-kinematic packages correspond to the Pliocene Tipam Group and Pleistocene Dupitila Formation. This implies that the structural development in the western Chittagong Tripura Fold Belt took place from the Pliocene. In the Hatia Trough, the timing of structural activation is slightly later (since the Plio-Pleistocene). In general, fold intensity and structural complexity gradually increase towards the east. The presence of reverse faults with minor strike-slip motion along the frontal thrust system in the outer wedge is also consistent with the regional transpressional structures of the Indo-Burman subduction system. However, to the west, there is no evidence for strike-slip deformation in the Hatia Trough. The restored sections show that the amount of E-W shortening in the Hatia Trough is very low (maximum 1.2%). In contrast, to the east, the amount of shortening is high (maximum 13.5%) in the western margin of the Chittagong Tripura Fold Belt. In both the areas, the key trapping mechanism includes anticlinal traps, although, stratigraphic and combinational traps are possible, but it requires further evaluation.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 510
Author(s):  
Domenico Aringoli ◽  
Piero Farabollini ◽  
Gilberto Pambianchi ◽  
Marco Materazzi ◽  
Margherita Bufalini ◽  
...  

In many areas of the Umbria-Marche Apennines, evident traces of huge landslides have been recognized; these probably occurred in the Upper Pleistocene and are conditioned by the tectonic-structural setting of the involved Meso-Cenozoic formations, in a sector of the Sibillini Mountains (central Italy). The present work aimed to focus on a geomorphological hazard in the tectonic-structural setting of a complex area that is the basis of several gravitational occurrences in different types and mechanisms, but nonetheless with very considerable extension and total destabilized volume. An aerophoto-geological analysis and geomorphological survey allowed verification of how the main predisposing factor of these phenomena is connected with the presence in depth of an important tectonic-structural element: the plane of the Sibillini Mountains thrust, which brings the pre-evaporitic member of the Laga Formation in contact with the Cretaceous-Eocene limestone lithotypes (from the Maiolica to the Scaglia Rosata Formations) of the Umbria-Marche sedimentary sequence. Another important element for the mass movements activation is the presence of an important and vast water table and related aquifer, confined prevalently by the different structural elements and in particular by the thrust plane, which has acted and has continued to act, weakening the rocky masses and the overlaying terrains.


Tectonics ◽  
2021 ◽  
Author(s):  
Russell V. Di Fiori ◽  
Sean P. Long ◽  
Anne C. Fetrow ◽  
Kathryn E. Snell ◽  
Joshua W. Bonde ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document