turbidite sedimentation
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 0)

H-INDEX

15
(FIVE YEARS 0)

2014 ◽  
Vol 2 (4) ◽  
pp. SJ35-SJ45 ◽  
Author(s):  
Juarez Lourenço ◽  
Paulo T. L. Menezes ◽  
Valeria C. F. Barbosa

We interpreted northwest-trending transfer faults whose extensions are not entirely mapped in the Precambrian basement of the onshore and offshore Campos Basin. To enhance the subtle northwest–southeast lineaments not clearly seen in the total-field data, we reprocessed and merged two airborne magnetic data sets aiming at producing a single merged magnetic data set. Next, we applied a directional filter to these integrated magnetic data. Finally, we applied a multiscale edge detection method to these filtered data. This combination allowed the detection of edges and ridges that are used to produce several northwest–southeast lineations. We interpreted these northwest-trending lineations as magnetic expressions of transfer faults that cut across the onshore adjacent basement of the Campos Basin to the shallow and deep Campos Basin waters. These interpreted northwest-trending faults suggested the continuity of the known northwest-striking transfer faults in the deep Campos Basin waters toward the shallow Campos Basin waters and the adjacent continent. Moreover, our interpreted northwest-trending faults revealed the control of several known oilfields in the Campos Basin. This result supported the hypothesis of the influence of the northwest–southeast-trending transfer faults on the petroleum system of Campos Basin, which were reactivated in the Tertiary providing a pathway for the turbidite sedimentation, reworking, and redistribution of several deepwater reservoirs. In addition, it was hypothesized that this faulting system controlled the hydrocarbon migration paths from the presalt source rocks through salt windows into basal suprasalt layers.


2012 ◽  
Vol 331-332 ◽  
pp. 75-89 ◽  
Author(s):  
Jody M. Webster ◽  
Robin J. Beaman ◽  
Ángel Puga-Bernabéu ◽  
Deane Ludman ◽  
Willem Renema ◽  
...  

2012 ◽  
Vol 303-306 ◽  
pp. 137-153 ◽  
Author(s):  
Samuel Toucanne ◽  
Sebastien Zaragosi ◽  
Jean-François Bourillet ◽  
Bernard Dennielou ◽  
Stephan J. Jorry ◽  
...  

2011 ◽  
Vol 182 (3) ◽  
pp. 199-220 ◽  
Author(s):  
Lise Salles ◽  
Mary Ford ◽  
Philippe Joseph ◽  
Christian Le Carlier De Veslud ◽  
Antoine Le Solleuz

AbstractThe Annot Sandstone turbidites of the Alpine foreland basin in SE France (Eocene-Oligocene: 40-32 Ma), provide an excellent case-study of tectono-sedimentary relations in a deepwater compressional system. The Annot outlier is a synclinal remnant previously interpreted as a static depocentre. A multi-disciplinary approach including geometrical and kinematic analyses and modelling demonstrates instead that this was a tectonically active turbidite depocentre where gentle thrust related folding controlled turbidite architecture.Stratigraphic and new structural field data are integrated with previous sedimentological studies to build a 3D geometric model of the Annot depocentre. Derived thickness maps associated with paleocurrent measurements clearly illustrate three main phases in the evolution of depocentre topography. (1) Early turbidite flows were mainly trapped by oblique intrabasinal inherited structures. (2) Once these structures were buried, the NNW-SSE active syncline constituted the main topographic control. (3) Decreasing activity of this syncline is recorded by filling and flow bypass. The progressive stages of the accepted depositional model (flow ponding, flow stripping and flow bypass), for the Annot depocentre, may therefore have a tectonic origin.The kinematic evolution of the synclinal depocentre was defined at different scales. Stratigraphic architecture records a decrease in bedding dips up through the turbidite succession on the western synclinal limb. Comparison with idealized case studies of the interaction of sedimentation with an active syncline indicates that this geometrical pattern corresponds to progressive westward migration of the synclinal hinge and depocentre. This tends to promote lateral rather than vertical stacking of sand bodies during turbidite sedimentation. Trishear kinematic modelling was used to simulate (in 2D) the rolling synclinal hinge. Stratigraphic surface geometries and turbidite depocentre migration define thrust and fold geometries at depth. The synclinal depocentre developed between two alternating or coeval fault propagation anticlines that exploited two detachment levels (Triassic evaporites and Cenomanian marls) in the underlying succession.


2006 ◽  
Vol 39 (1) ◽  
pp. 100
Author(s):  
G. Pantopoulos ◽  
P. Konstantopoulos ◽  
A. Maravelis ◽  
A. Zelilidis

Examples of various types of statistical analysis of submarine fan bed thickness distributions that have been proposed in the past are reported, as well as an example of their application in Late Eocene-Oligocene submarine fan deposits of SE Greece (Karpathos Island). Generally, the sandstone bed thickness data measured in two outcrops of Karpathos submarine fans seems to follow power law (fractal) cumulative distributions. A deviation from the power law was observed as amalgamationprocedures become more frequent. These observations gave important information about Tertiary turbidite sedimentation in the area which probably was punctuated and had a single main sediment source. Information taken from statistical analysis of submarine fans bed thickness data has immediate applicability in hydrocarbon exploration because sandstones constitute ideal reservoirs.


2005 ◽  
Vol 42 (6) ◽  
pp. 895-934 ◽  
Author(s):  
Venessa Bennett ◽  
Valerie A Jackson ◽  
Toby Rivers ◽  
Carolyn Relf ◽  
Pat Horan ◽  
...  

U–Pb zircon crystallization ages determined by isotope dilution – thermal ionization mass spectrometry (ID–TIMS) and laser ablation microprobe – inductively coupled plasma – mass spectrometry (LAM–ICP–MS) for 13 intrusive units in the Neoarchean Snare River terrane (SRT) provide tight constraints on the timing of crust formation and orogenic evolution. Seven metaluminous plutons were emplaced over ~80 Ma from ca. 2674 to 2589 Ma, whereas six peraluminous bodies were emplaced in a ~15 Ma interval from ca. 2598 to 2585 Ma. A detrital zircon study yielded an age spectrum with peaks correlative with known magmatic events in the Slave Province, with the ca. 2635 Ma age of the youngest detrital zircon population providing a maximum estimate for the onset of sedimentation. This age contrasts with evidence for pre-2635 Ma sedimentation elsewhere in the SRT, indicating that sedimentation was protracted and diachronous. Evolution of the SRT can be subdivided into four stages: (i) 2674–2635 Ma — formation of a metaluminous protoarc in a tonalite–trondhjemite–granodiorite (TTG) – granite–greenstone tectonic regime (TR1) and coeval with early turbidite sedimentation; (ii) 2635–2608 Ma — continued turbidite sedimentation, D1/M1 juxtaposition of turbidites and protoarc lithologies prior to ~2608 Ma, and metaluminous granitoid plutonism; (iii) 2608–2597 Ma — onset of TR2, collision of Snare protoarc with Central Slave Basement Complex, D2/M2 crustal thickening and mid-crustal granulite-facies metamorphism, sychronous with metaluminous and peraluminous plutonism; and (iv) 2597–2586 Ma — orogenic collapse, D3/M3 mid-crustal uplift, granulite-facies metamorphism, and waning metaluminous and peraluminous plutonism. The distribution of igneous rocks yields an "orogenic stratigraphy" with an older upper crust underlain by a younger synorogenic mid-crust. These data can be used to provide constraints for the interpretation of the Slave – Northern Cordillera Lithospheric Evolution (SNORCLE) Lithoprobe transect.


Sign in / Sign up

Export Citation Format

Share Document