Sea Level History Across the Northern South American Passive Margin: Eustatic vs. Tectonic Regulation: ABSTRACT

AAPG Bulletin ◽  
1994 ◽  
Vol 78 ◽  
Author(s):  
Erle G. Kauffman, Tomas Villamil
2014 ◽  
Vol 82 (2) ◽  
pp. 462-472 ◽  
Author(s):  
Rosana Gandini ◽  
Dilce de Fátima Rossetti ◽  
Renata Guimarães Netto ◽  
Francisco Hilário Rego Bezerra ◽  
Ana Maria Góes

AbstractQuaternary post-Barreiras sediments are widespread along Brazil's passive margin. These deposits are well exposed in the onshore Paraíba Basin, which is one of the rift basins formed during the Pangean continental breakup. In this area, the post-Barreiras sediments consist of sandstones with abundant soft-sediment deformation structures related to seismicity contemporaneous with deposition. The trace fossilsThalassinoidesandPsilonichnusare found up to 38 m above modern sea level in sandstones dated between 60.0 (± 1.4) and 15.1 (± 1.8) ka. The integration of ichnological and sedimentary facies suggests nearshore paleoenvironments. Such deposits could not be related to eustatic sea-level rise, as this time coincides with the last glaciation. Hence, an uplift of 0.63 mm/yr, or 1.97 mm/yr if sea level was 80 m lower in the last glaciation, would have been required to ascend the post-Barreiras sediments several meters above the present-day sea level during the last 60 ka. This would suggest that the post-rift stage of the South American eastern passive margin may have experienced tectonic reactivation more intense than generally recognized. Although more complete data are still needed, the information presented herein may play an important role in studies aiming to decipher the Quaternary evolution of this passive margin.


Geomorphology ◽  
2019 ◽  
Vol 325 ◽  
pp. 1-16 ◽  
Author(s):  
Fabio Corrêa Alves ◽  
Dilce de Fátima Rossetti ◽  
Márcio de Morisson Valeriano ◽  
Clódis de Oliveira Andrades Filho

2021 ◽  
Author(s):  
Sara Morón ◽  
Mike Blum ◽  
Tristan Salles ◽  
Bruce Frederick ◽  
Rebecca Farrington ◽  
...  

<p>The nature and contribution of flexural isostatic compensation to subsidence and uplift of passive margin deltas remains poorly understood. We performed a series of simulations to investigate flexural isostatic responses to high frequency fluctuations in water and sediment load associated with climatically-driven sea-level changes. We use a parallel basin and landscape dynamics model, BADLANDS, (an acronym for BAsin anD LANdscape DynamicS) that combines erosion, sedimentation, and diffusion with flexure, where the isostatic compensation of the load is computed by flexural compensation. We model a large drainage basin that discharges to a continental margin to generate a deltaic depocenter, then prescribe synthetic and climatic-driven sea-level curves of different frequencies to assess flexural response. Results show that flexural isostatic adjustments are bidirectional over 100-1000 kyr time-scales and mirror the magnitude, frequency, and direction of sea-level fluctuations, and that isostatic adjustments play an important role in driving along-strike and cross-shelf river-mouth migration and sediment accumulation. Our findings demonstrate that climate-forced sea-level changes set up a feedback mechanism that results in self-sustaining creation of accommodation into which sediment is deposited and plays a major role in delta morphology and stratigraphic architecture.</p>


2019 ◽  
Vol 500 (1) ◽  
pp. 267-276 ◽  
Author(s):  
Aaron Micallef ◽  
Aggeliki Georgiopoulou ◽  
Andrew Green ◽  
Vittorio Maselli

AbstractThe sheared-passive margin offshore Durban (South Africa) is characterized by a narrow continental shelf and steep slope hosting numerous submarine canyons. Supply of sediment to the margin is predominantly terrigenous, dominated by discharge from several short but fast-flowing rivers. International Ocean Discovery Program Expedition 361 provides a unique opportunity to investigate the role of sea-level fluctuations on the sedimentation patterns and slope instability along the South African margin. We analysed >300 sediment samples and downcore variations in P-wave, magnetic susceptibility, bioturbation intensity and bulk density from site U1474, as well as regional seismic reflection profiles to: (1) document an increase in sand input since the Mid-Pliocene; (2) associate this change to a drop in sea-level and extension of subaerial drainage systems towards the shelf-edge; (3) demonstrate that slope instability has played a key role in the evolution of the South Africa margin facing the Natal Valley. Furthermore, we highlight how the widespread occurrence of failure events reflects the tectonic control on the morphology of the shelf and slope, as well as bottom-current scour and instability of fan complexes. This information is important to improve hazard assessment in a populated coastal region with growing offshore hydrocarbon activities.


2018 ◽  
Author(s):  
Xuesong Ding ◽  
Tristan Salles ◽  
Nicolas Flament ◽  
Patrice Rey

Abstract. The sedimentary architecture at continental margins reflects the interplay between the rate of change of accommodation creation (δA) and the rate of change of sediment supply (δS). As a result, stratigraphic interpretation increasingly focuses on understanding the link between deposition patterns and changes in δA/δS. Here, we use the landscape modelling framework pyBadlands to assess the respective performance of two well-established stratigraphic interpretation techniques: the trajectory analysis method and the accommodation succession method. In contrast to most Stratigraphic Forward Models (SFMs), pyBadlands provides self-consistent sediment supply to basin margins as it simulates erosion, sediment transport and deposition in a source-to-sink context. We present a landscape evolution that takes into account periodic sea level variations and passive margin thermal subsidence over 30 million years, under uniform rainfall. We implement the two aforementioned approaches to interpret the resulting depositional cycles at the continental margin. We first apply both the trajectory analysis and the accommodation succession methods to manually map key stratigraphic surfaces and define stratigraphic units from shelf-edge (or offlap break) trajectories, stratal terminations and stratal geometries. We then design a set of post-processing numerical tools to calculate shoreline and shelf-edge trajectories, the temporal evolution of changes in accommodation and sedimentation, and automatically produce stratigraphic interpretations. Comparing manual and automatic stratigraphic interpretations reveals that the results of the trajectory analysis method depend on time-dependent processes such as thermal subsidence whereas the accommodation succession method does not. In addition to reconstructing stratal stacking patterns, the tools we introduce here make it possible to quickly extract Wheeler diagrams and synthetic cores at any location within the simulated domain. Our work provides an efficient and flexible quantitative sequence stratigraphic framework to evaluate the main drivers (climate, sea level and tectonics) controlling sedimentary architectures and investigate their respective roles in sedimentary basins development.


Sign in / Sign up

Export Citation Format

Share Document