High Fluid-Inclusion Homogenization Temperatures in Carbonates of Lower Ordovician Beekmantown Group in Northern Appalachian Basin: ABSTRACT

AAPG Bulletin ◽  
1984 ◽  
Vol 68 ◽  
Author(s):  
Stephen F. Urschel, Gerald M. Fried
Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 422
Author(s):  
Daniel Marshall ◽  
Carol-Anne Nicol ◽  
Robert Greene ◽  
Rick Sawyer ◽  
Armond Stansell ◽  
...  

Gold, present as electrum, in the Battle Gap, Ridge North-West, HW, and Price deposits at the Myra Falls mine, occurs in late veinlets cutting the earlier volcanogenic massive sulphide (VMS) lithologies. The ore mineral assemblage containing the electrum comprises dominantly galena, tennantite, bornite, sphalerite, chalcopyrite, pyrite, and rarely stromeyerite, and is defined as an Au-Zn-Pb-As-Sb association. The gangue is comprised of barite, quartz, and minor feldspathic volcanogenic sedimentary rocks and clay, comprised predominantly of kaolinite with subordinate illite. The deposition of gold as electrum in the baritic upper portions of the sulphide lenses occurs at relatively shallow water depths beneath the sea floor. Primary, pseudosecondary, and secondary fluid inclusions, petrographically related to gold, show boiling fluid inclusion assemblages in the range of 123 to 173 °C, with compositions and eutectic melt temperatures consistent with seawater at approximately 3.2 wt % NaCl equivalent. The fluid inclusion homogenization temperatures are consistent with boiling seawater corresponding to water depths ranging from 15 to 125 m. Slightly more dilute brines corresponding to salinities of approximately 1 wt % NaCl indicate that there is input from very low-salinity brines, which could represent a transition from subaqueous VMS to epithermal-like conditions for precious metal enrichment, mixing with re-condensed vapor, or very low-salinity igneous fluids.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Qihai Shu ◽  
Yong Lai

The Haisugou porphyry Mo deposit is located in the northern Xilamulun district, northeastern China. Based on alteration and mineralization styles and crosscutting relationships, the hydrothermal evolution in Haisugou can be divided into three stages: an early potassic alteration stage with no significant metal deposition, a synmineralization sericite-chlorite alteration stage with extensive Mo precipitation, and a postmineralization stage characterized by barren quartz and minor calcite and fluorite. The coexistence of high-salinity brine inclusions with low-salinity inclusions both in potassic alteration stage (~440°C) and locally in the early time of mineralization stage (380–320°C) indicates the occurrence of fluid boiling. The positive correlations between the homogenization temperatures and the salinities of the fluids and the low oxygen isotopic compositions (δ18Ofluid < 3‰) of the syn- to postmineralization quartz together suggest the mixing of magmatic fluids with meteoric water, which dominated the whole mineralization process. The early boiling fluids were not responsible for ore precipitation, whereas the mixing with meteoric water, which resulted in temperature decrease and dilution that significantly reduced the metal solubility, should have played the major role in Mo mineralization. Combined fluid inclusion microthermometry and chlorite geothermometer results reveal that ore deposition mainly occurred between 350 and 290°C in Haisugou.


Sign in / Sign up

Export Citation Format

Share Document