Estimating the Moisture Content of Lumber above the Fiber Saturation Point Using Stress Wave Velocity during the Natural Drying Process

2016 ◽  
Vol 66 (7-8) ◽  
pp. 453-460
Author(s):  
Isao Toyoshima ◽  
Mariko Yamasaki ◽  
Yasutoshi Sasaki
Holzforschung ◽  
2000 ◽  
Vol 54 (3) ◽  
pp. 309-314 ◽  
Author(s):  
Song-Yung Wang ◽  
Shih-Tzu Chuang

Summary Experimentally it was observed that the dynamic modulus of elasticity calculated from the velocity of stress wave or ultrasonic wave and the density of wood in green condition increased with increasing moisture content. This statement disagrees with the physical meaning of data observed with static tests, namely the decreasing of all mechanical properties of wood with increasing moisture content. To elucidate this discrepancy a simulation procedure was developed to study the effect of free water, present in wood above the fiber saturation point on wave velocity. For this purpose the coefficient k, related to the mobility of free water was defined, as a ratio of free water vibrating simultaneously with water present in cellular wall (k = 0.6 for stress wave velocity and k = 0.7 for ultrasonic velocity). The simulation procedure using corrected values of velocity and density showed that the elastic moduli are relatively constant above the FSP, as all the mechanical parameters determined with static tests.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6680-6695
Author(s):  
Xiwen Wei ◽  
Liping Sun ◽  
Hongjv Zhou ◽  
Yang Yang ◽  
Yifan Wang ◽  
...  

Based on the effects of stress wave propagation in larch (Larix gmelinii) wood, the propagation mechanism of stress wave was explored, and a theoretical model of the propagation velocity of stress waves in the three-dimensional space of wood was developed. The cross and longitudinal propagation velocities of stress wave were measured in larch wood under different moisture contents (46% to 87%, 56% to 96%, 20% to 62%, and 11% to 30%) in a laboratory setting. The relationships between the propagation velocity of stress waves and the direction angle or chord angle with different moisture contents were analyzed, and the three-dimensional regression models among four parameters were established. The analysis results indicated that under the same moisture content, stress wave velocity increased as the direction angle increased and decreased as chord angle increased, and the radial velocity was the largest. Under different moisture contents, stress wave velocity gradually decreased as moisture content increased, and the stress wave velocity was more noticeably affected by moisture content when moisture content was below the fiber saturation point (FSP, 30%). The nonlinear regression models of the direction angle, chord angle, moisture content, and the propagation velocity of stress wave fit the experiment data well (R2 ≥ 0.97).


2017 ◽  
Vol 63 (3) ◽  
pp. 225-235 ◽  
Author(s):  
Mariko Yamasaki ◽  
Chika Tsuzuki ◽  
Yasutoshi Sasaki ◽  
Yuji Onishi

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5379-5387
Author(s):  
Tiago H. Almeida ◽  
Diego H. Almeida ◽  
Vinicius B. M. Aquino ◽  
Eduardo Chahud ◽  
Roberto V. Pinheiro ◽  
...  

The fiber saturation point (FSP) is an important parameter of wood material, related to dimensional stability and variations of mechanical performance. This paper investigated the FSP values of 15 tropical Brazilian wood species covering all strength classes of the Brazilian standard code. An additional goal was to estimate FSP value based on the wood’s apparent density. The FSP values were determined by measuring the wood specimen dimensions during moisture content reduction from the saturated state. Wood densities at 0% and 12% moisture contents and basic density were determined according to the Brazilian standard code. The average FSP for all wood species was 21.6% moisture content. Among density values, good correlations were observed, and a multivariate regression model for FSP estimation based on wood densities presented a coefficient of determination equal to 13.07%. There was no correlation between FSP and wood densities, suggesting that this parameter is almost constant regardless of the wood species.


Holzforschung ◽  
2003 ◽  
Vol 57 (5) ◽  
pp. 547-552 ◽  
Author(s):  
S.-Y. S.-Y.Wang ◽  
C.-J. Lin ◽  
C.-M. Chiu

Summary In this study, the effects of moisture content and bulk density on the ultrasonic velocity of Taiwania (Taiwania cryptomerioides Hay.) plantation wood in the longitudinal and radial directions are investigated. The dynamic modulus of elasticity is adjusted above the fiber saturation point by a simple method. It was observed that ultrasonic velocity tended to increase with a decrease in moisture content, and the effect of moisture content on the ultrasonic speed below the fiber saturation point was stronger than that above. Moreover, for this species ultrasonic speed in the longitudinal direction decreased with increasing bulk density, while that in the radial direction increased. The correlations between ultrasonic velocity, moisture and bulk density could be represented by a polynomial regression model. The K value for ultrasonic wave was affected by density. The adjusted dynamic modulus of elasticity remained fairly constant above the fiber saturation point using this simple method. Therefore, the results obtained by the ultrasonic-wave technique should be adjusted before estimating some physical properties of standing trees.


Sign in / Sign up

Export Citation Format

Share Document