scholarly journals On differentiation of functional in problem on parametric coefficient optimization in semilinear global electric circuit equation

2021 ◽  
Vol 13 (3) ◽  
pp. 152-173
Author(s):  
Andrei Vladimirovich Chernov
2015 ◽  
Vol 8 (10) ◽  
pp. 3007-3020 ◽  
Author(s):  
V. Bayona ◽  
N. Flyer ◽  
G. M. Lucas ◽  
A. J. G. Baumgaertner

Abstract. A numerical model based on radial basis function-generated finite differences (RBF-FD) is developed for simulating the global electric circuit (GEC) within the Earth's atmosphere, represented by a 3-D variable coefficient linear elliptic partial differential equation (PDE) in a spherically shaped volume with the lower boundary being the Earth's topography and the upper boundary a sphere at 60 km. To our knowledge, this is (1) the first numerical model of the GEC to combine the Earth's topography with directly approximating the differential operators in 3-D space and, related to this, (2) the first RBF-FD method to use irregular 3-D stencils for discretization to handle the topography. It benefits from the mesh-free nature of RBF-FD, which is especially suitable for modeling high-dimensional problems with irregular boundaries. The RBF-FD elliptic solver proposed here makes no limiting assumptions on the spatial variability of the coefficients in the PDE (i.e., the conductivity profile), the right hand side forcing term of the PDE (i.e., distribution of current sources) or the geometry of the lower boundary.


2014 ◽  
Vol 135-136 ◽  
pp. 228-243 ◽  
Author(s):  
Richard J. Blakeslee ◽  
Douglas M. Mach ◽  
Monte G. Bateman ◽  
Jeffrey C. Bailey

Geosciences ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 491
Author(s):  
Sergey Pulinets ◽  
Galina Khachikyan

Basing on the catalogue of earthquakes with a magnitude of M ≥ 4.5 for the period 1973–2017, a UT variation with an amplitude of ~10% in the number of earthquakes is revealed and compared with a UT variation in the ionospheric potential (IP) with an amplitude of ~18%. We demonstrate that the amplitude of the UT variation in the number of deep-focus earthquakes is greater compared with that of crustal earthquakes, reaching 19%. The UT of the primary maxima of both the IP (according to modern calculations) and of earthquake incidence coincides (near 17:00 UT) and is, by 2 h, ahead of the classical Carnegie curve representing the UT variation in the atmospheric electric field on the ground surface. The linear regression equation between these UT variations in the number of deep-focus earthquakes and the ionospheric potential is obtained, with a correlation coefficient of R = 0.97. The results support the idea that the processes of earthquake preparation are coupled to the functional processes of the global electric circuit and the generation of atmospheric electric fields. In particular, the observed increase in thunderstorm activity over earthquake preparation areas, provided by air ionization due to radon emanation, yields a clue as to why the global thunderstorm distribution is primarily continental. Another important conclusion is that, in observing the longitudinal distributions of earthquakes against the IP distribution, we automatically observe that all such events occur in local nighttime hours. Considering that the majority of earthquake precursors have their maximums at local night and demonstrating the positive deviation from the undisturbed value, we obtain a clue as to its positive correlation with variations in the ionospheric potential.


2019 ◽  
Vol 183 ◽  
pp. 99-109 ◽  
Author(s):  
Nikolay N. Slyunyaev ◽  
Alexey V. Kalinin ◽  
Evgeny A. Mareev

2014 ◽  
Vol 14 (4) ◽  
pp. 773-777 ◽  
Author(s):  
R. G. Harrison ◽  
K. L. Aplin ◽  
M. J. Rycroft

Abstract. We illustrate how coupling could occur between surface air and clouds via the global electric circuit – through Atmospheric Lithosphere–Ionosphere Charge Exchange (ALICE) processes – in an attempt to develop a physical understanding of the possible relationships between earthquakes and clouds.


Sign in / Sign up

Export Citation Format

Share Document