conductivity profile
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 11)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Alexey Kuvshinov ◽  
Alexander Grayver ◽  
Lars Tøffner-Clausen ◽  
Nils Olsen

AbstractThis study presents results of mapping three-dimensional (3-D) variations of the electrical conductivity in depths ranging from 400 to 1200 km using 6 years of magnetic data from the Swarm and CryoSat-2 satellites as well as from ground observatories. The approach involves the 3-D inversion of matrix Q-responses (transfer functions) that relate spherical harmonic coefficients of external (inducing) and internal (induced) origin of the magnetic potential. Transfer functions were estimated from geomagnetic field variations at periods ranging from 2 to 40 days. We study the effect of different combinations of input data sets on the transfer functions. We also present a new global 1-D conductivity profile based on a joint analysis of satellite tidal signals and global magnetospheric Q-responses.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lari M. Koponen ◽  
Matti Stenroos ◽  
Jaakko O. Nieminen ◽  
Kimmo Jokivarsi ◽  
Olli Gröhn ◽  
...  

Abstract In transcranial magnetic stimulation (TMS), the initial cortical activation due to stimulation is determined by the state of the brain and the magnitude, waveform, and direction of the induced electric field (E-field) in the cortex. The E-field distribution depends on the conductivity geometry of the head. The effects of deviations from a spherically symmetric conductivity profile have been studied in detail in humans. In small mammals, such as rats, these effects are more pronounced due to their less spherical head, proportionally much thicker neck region, and overall much smaller size compared to the TMS coils. In this study, we describe a simple method for building individual realistically shaped head models for rats from high-resolution X-ray tomography images. We computed the TMS-induced E-field with the boundary element method and assessed the effect of head-model simplifications on the estimated E-field. The deviations from spherical symmetry have large, non-trivial effects on the E-field distribution: for some coil orientations, the strongest stimulation is in the brainstem even when the coil is over the motor cortex. With modelling prior to an experiment, such problematic coil orientations can be avoided for more accurate targeting.


2020 ◽  
Vol 498 (1) ◽  
pp. 621-638
Author(s):  
Deniz Soyuer ◽  
François Soubiran ◽  
Ravit Helled

ABSTRACT Determining the depth of atmospheric winds in the outer planets of the Solar system is a key topic in planetary science. We provide constraints on these depths in Uranus and Neptune via the total induced Ohmic dissipation, due to the interaction of the zonal flows and the planetary magnetic fields. An upper bound can be placed on the induced dissipation via energy and entropy flux throughout the interior. The induced Ohmic dissipation is directly linked to the electrical conductivity profile of the materials involved in the flow. We present a method for calculating electrical conductivity profiles of ionically conducting hydrogen–helium–water mixtures under planetary conditions, using results from ab initio simulations. We apply this prescription on several ice giant interior structure models available in the literature, where all the heavy elements are represented by water. According to the energy (entropy) flux budget, the maximum penetration depth for Uranus lies above 0.93 RU (0.90 RU) and for Neptune above 0.95 RN (0.92 RN). These results for the penetration depths are upper bounds and are consistent with previous estimates based on the contribution of the zonal winds to the gravity field. As expected, interior structure models with higher water abundance in the outer regions also have a higher electrical conductivity and therefore reach the Ohmic limit at shallower regions. Thus, our study shows that the likelihood of deep-seated winds on Uranus and Neptune drops significantly with the presence of water in the outer layers.


2020 ◽  
Vol 636 ◽  
pp. L10
Author(s):  
Kristina Kislyakova ◽  
Lena Noack

Aims. We investigate possible driving mechanisms of volcanic activity on rocky super-Earths with masses exceeding 3–4 M⊕. Due to high gravity and pressures in the mantles of these planets, melting in deep mantle layers can be suppressed, even if the energy release due to tidal heating and radioactive decay is substantial. Here we investigate whether a newly identified heating mechanism, namely induction heating by the star’s magnetic field, can drive volcanic activity on these planets due to its unique heating pattern in the very upper part of the mantle. In this region the pressure is not yet high enough to preclude the melt formation. Methods. Using the super-Earth HD 3167b as an example, we calculate induction heating in the planet’s interiors assuming an electrical conductivity profile typical of a hot rocky planet and a moderate stellar magnetic field typical of an old inactive star. Then we use a mantle convection code (CHIC) to simulate the evolution of volcanic outgassing with time. Results. We show that although in most cases volcanic outgassing on HD 3167b is not very significant in the absence of induction heating, including this heating mechanism changes the picture and leads to a substantial increase in the outgassing from the planet’s mantle. This result shows that induction heating combined with a high surface temperature is capable of driving volcanism on massive super-Earths, which has important observational implications.


2020 ◽  
Author(s):  
Alexander Grayver ◽  
Nils Olsen ◽  
Chris Finlay ◽  
Alexey Kuvshinov

<p>The continuous high-quality geomagnetic field measurements delivered by the Swarm satellite constellation trio have enabled reliable global mapping of the magnetic signature of ocean tides for several tidal constituents. These signals provide geophysical constraints on the average electrical conductivity profile of the upper mantle below the oceans. In principle, these signals can also sense lateral variations of the electrical conductivity in the oceanic upper mantle, although the amplitude of these effects is small. Additionally, the long-term changes in the climatology of the ocean can be potentially detected by the magnetic satellite signals. Both applications put additional demands on the accuracy and resolution of the extracted signals. This contribution discusses potential ways to meet the required demands and evaluates the feasibility of using the magnetic signature of ocean tides for studying these effects.</p>


2019 ◽  
Author(s):  
Lari M. Koponen ◽  
Matti Stenroos ◽  
Jaakko O. Nieminen ◽  
Kimmo Jokivarsi ◽  
Olli Gröhn ◽  
...  

AbstractIn transcranial magnetic stimulation (TMS), the initial cortical activation due to stimulation is determined by the state of the brain and the magnitude, waveform, and direction of the induced electric field (E-field) in the cortex. The E-field distribution depends on the conductivity geometry of the head. The effects of deviations from a spherically symmetric conductivity profile have been studied in detail in humans. In small mammals, such as rats, these effects are more pronounced due to their smaller and less spherical heads. In this study, we describe a simple method for building individual realistically shaped head models for rats from high-resolution X-ray tomography images. We computed the TMS-induced E-field with the boundary element method and assessed the effect of head-model simplifications on the estimated E-field. The deviations from spherical symmetry have large, non-trivial effects on the E-field distribution: in some cases, even the direction of the E-field in the cortex cannot be reliably predicted by the coil orientation unless these deviations are properly considered.


2019 ◽  
Vol 206 ◽  
pp. 249-251 ◽  
Author(s):  
Nataliya P. Satonkina ◽  
Alexander P. Ershov ◽  
Andrey V. Plastinin ◽  
Alexander S. Yunoshev

Sign in / Sign up

Export Citation Format

Share Document