scholarly journals Robotic complex for inspection of the outer surface of the aircraft in its parking lot

2020 ◽  
Vol 12 (S) ◽  
pp. 21-31
Author(s):  
Boris S. ALESHIN ◽  
Alexander I. CHERNOMORSKY ◽  
Eduard D. KURIS ◽  
Konstantin S. LELKOV ◽  
Maxim V. IVAKIN

Through-flight inspection of the outer surface of the aircraft is necessary to identify possible damage to the surface of the aircraft caused by metal fatigue, lightning, birds collision, etc. The article discusses the method of robotic inspection of the outer surface of the aircraft in its open air parking area. The robotic complex (RC) consists of an unmanned ground vehicle (UGV) and an unmanned aerial vehicle (UAV) interconnected by a tether mechanism (TM). The algorithm of the RC functioning is presented. The main attention is paid to the formation of the TM control and the features of its work, ensuring the prevention of collisions of UAV with aircraft during extreme wind actions on UAV. The study of the most critical mode of the complex operation under extreme wind actions on an unmanned aerial vehicle is carried out. The results of modeling the typical process of the RC operation in an abnormal conditions of extreme wind exposure to UAV are presented.

2020 ◽  
Vol 12 (6) ◽  
pp. 940 ◽  
Author(s):  
Xiuliang Jin ◽  
Zhenhai Li ◽  
Clement Atzberger

High-throughput crop phenotyping is harnessing the potential of genomic resources for the genetic improvement of crop production under changing climate conditions. As global food security is not yet assured, crop phenotyping has received increased attention during the past decade. This spectral issue (SI) collects 30 papers reporting research on estimation of crop phenotyping traits using unmanned ground vehicle (UGV) and unmanned aerial vehicle (UAV) imagery. Such platforms were previously not widely available. The special issue includes papers presenting recent advances in the field, with 22 UAV-based papers and 12 UGV-based articles. The special issue covers 16 RGB sensor papers, 11 papers on multi-spectral imagery, and further 4 papers on hyperspectral and 3D data acquisition systems. A total of 13 plants’ phenotyping traits, including morphological, structural, and biochemical traits are covered. Twenty different data processing and machine learning methods are presented. In this way, the special issue provides a good overview regarding potential applications of the platforms and sensors, to timely provide crop phenotyping traits in a cost-efficient and objective manner. With the fast development of sensors technology and image processing algorithms, we expect that the estimation of crop phenotyping traits supporting crop breeding scientists will gain even more attention in the future.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 427-440 ◽  
Author(s):  
Xiao Liang ◽  
Guodong Chen ◽  
Shirou Zhao ◽  
Yiwei Xiu

Using the characteristics of unmanned aerial vehicle/unmanned ground vehicle, heterogeneous systems can accomplish many complex tasks cooperatively. Moving target tracking is an important basis for the relative positioning and formation maintenance of heterogeneous cooperative systems. This paper first introduces the unmanned aerial vehicle/unmanned ground vehicle collaborative tracking task and heterogeneous system. In order to maintain the original stability of unmanned aerial vehicle, a control method based on SBUS protocol to simulate remote control is proposed. About unmanned ground vehicle with Mecanum wheel, a detailed description of control method is designed. For the problems of real-time performance and occlusion, a tracking scheme based on AprilTag identification is studied. The scheme tracks the Tag target in the case of no occlusion. When occlusion occurs, the scheme tracks the color feature around the Tag. The accuracy of the tracking algorithm and the problem of occlusion are greatly improved. Finally, the scheme is applied to the heterogeneous systems. Simulation and experimental results show that the proposed method is suitable for unmanned aerial vehicle/unmanned ground vehicle heterogeneous system to perform the collaborative tracking task.


2019 ◽  
Vol 36 (4) ◽  
pp. 818-845 ◽  
Author(s):  
John Peterson ◽  
Weilin Li ◽  
Brian Cesar‐Tondreau ◽  
John Bird ◽  
Kevin Kochersberger ◽  
...  

2018 ◽  
Vol 7 (2.21) ◽  
pp. 1 ◽  
Author(s):  
T Prajwal Shenoy ◽  
K Praveen Shenoy ◽  
Lukhman Khan ◽  
Sabdar Aziz ◽  
Sayed Afran ◽  
...  

Multimodal Vehicles can travel in at least two distinctive modes of transportation, be it air and water, land and water or air and land. In this paper, design and development of a novel unmanned multimodal vehicle is presented that can travel in air, land and water, also called a as a triphibian quadcopter which would prove beneficial in rescue operations and operations involving hazardous environments. The vehicle is essentially a mix of unmanned aerial vehicle, unmanned ground vehicle and unmanned surface vehicle and is equipped with mechanisms to travel in land, air and water at the will of the operator. The entire framework of the vehicle is built on the multi rotor configuration. Flight tests were conducted to validate the design.  


2018 ◽  
Vol 15 (1) ◽  
pp. 172988141775078 ◽  
Author(s):  
Tomas Lazna ◽  
Petr Gabrlik ◽  
Tomas Jilek ◽  
Ludek Zalud

This article discusses the highly autonomous robotic search and localization of radiation sources in outdoor environments. The cooperation between a human operator, an unmanned aerial vehicle, and an unmanned ground vehicle is used to render the given mission highly effective, in accordance with the idea that the search for potential radiation sources should be fast, precise, and reliable. Each of the components assumes its own role in the mission; the unmanned aerial vehicle (in our case, a multirotor) is responsible for fast data acquisition to create an accurate orthophoto and terrain map of the zone of interest. Aerial imagery is georeferenced directly, using an onboard sensor system, and no ground markers are required. The unmanned aerial vehicle can also perform rough radiation measurement, if necessary. Since the map contains three-dimensional information about the environment, algorithms to compute the spatial gradient, which represents the rideability, can be designed. Based on the primary aerial map, the human operator defines the area of interest to be examined by the applied unmanned ground vehicle carrying highly sensitive gamma-radiation probe/probes. As the actual survey typically embodies the most time-consuming problem within the mission, major emphasis is put on optimizing the unmanned ground vehicle trajectory planning; however, the dual-probe (differential) approach to facilitate directional sensitivity also finds use in the given context. The unmanned ground vehicle path planning from the pre-mission position to the center of the area of interest is carried out in the automated mode, similarly to the previously mentioned steps. Although the human operator remains indispensable, most of the tasks are performed autonomously, thus substantially reducing the load on the operator to enable them to focus on other actions during the search mission. Although gamma radiation is used as the demonstrator, most of the proposed algorithms and tasks are applicable on a markedly wider basis, including, for example, chemical, biological, radiological, and nuclear missions and environmental measurement tasks.


Sign in / Sign up

Export Citation Format

Share Document