Laminar-Flow Pressure Drop in Symmetrical Finite Rod Bundles

1976 ◽  
Vol 61 (2) ◽  
pp. 282-285 ◽  
Author(s):  
John P. Zarling
Volume 1 ◽  
2004 ◽  
Author(s):  
Eugene F. Adiutori

The correlation methodology widely used in heat transfer and fluid flow is based on fitting power laws to data. Because all power laws of positive exponent include the point (0,0), this methodology includes the tacit assumption that phenomena are best described by correlations that include the point (0,0). • If a phenomenon occurs near (0,0), the assumption is obviously valid. For example, laminar flow occurs near (0,0), and therefore the assumption is valid for laminar flow pressure drop correlations. • If a phenomenon does not occur near (0,0), the assumption is obviously invalid. For example, turbulent flow does not occur near (0,0)—it occurs only after a critical Reynolds number is reached. Therefore the assumption is invalid for turbulent flow pressure drop correlations. When the assumption is invalid, the correlation methodology widely used in heat transfer and fluid flow is lacking in rigor. The impact of the lack of rigor is evidenced by examples that demonstrate that, when this methodology is applied to phenomena that do not occur in the vicinity of (0,0), highly nonlinear power laws oftentimes result from data that exhibit highly linear behavior. Because the widely used methodology lacks rigor when applied to phenomena that do not occur near (0,0), power laws based on this methodology are suspect if they purport to describe phenomena that do not occur near (0,0). Data cited in support of such power laws should be recorrelated using rigorous correlation methodology. Rigorous correlation methodology is also used in heat transfer and fluid flow. It is described in the text, and should become the methodology in general use.


2004 ◽  
Author(s):  
Anthony J. Bowman ◽  
Hyunjae Park

Most pressure drop and heat transfer correlations obtained from the toroidal geometric system have been applied to the analysis of helical and spiral tube systems. While toroidal (and helical) coils have a constant radius of curvature about the coil center point (and center-line), spiral coils have a continuously varying radius of curvature, in which the varying centrifugal forces contribute to further enhance the heat transfer (at the cost of additional pressure drop) over toroidal and helical tube heat exchangers of the same length. Due to lack of published analytical, numerical and experimental data on spiral coil systems, in this paper, the laminar flow pressure drop and heat transfer characteristics of spiral coil systems are investigated with a commercially available CFD package (Fluent 6). First, an isothermal flow CFD analysis for a toroidal coil system is performed to optimally predict the local flow field and compared with the available experimental, numerical and analytical results, in which various model assumptions and operating conditions are involved. As a consequence, the heat transfer analysis with constant wall temperature boundary condition has been performed on a toroidal coil. With the verified CFD modeling schemes such as curved geometry creation, mesh/gird density control and solution model selection, the work is extended to the spiral coil system. The effects of Reynolds number and tube diameter to coil curvature ratio on the average friction factor and heat transfer characteristics are investigated for specified coil geometries utilizing water as the heat transfer medium. The general correlations for laminar flow pressure drop and heat transfer applied in a toroidal coil system are compared with the CFD results obtained from the spiral coil systems. It was found that up to 10% of the additional pressure drop and 40% of the enhanced heat transfer characteristics are obtained from the spiral coil system over the toroidal. The heat exchanger effectiveness ratio for spirals and toroids are compared for a range of Dean number. It was found that the spiral heat exchanger effectiveness ratio was between 20 to 30 percent greater than for general toroidal heat exchanger systems.


1994 ◽  
Vol 59 (3) ◽  
pp. 603-615 ◽  
Author(s):  
Václav Dolejš ◽  
Ivan Machač ◽  
Petr Doleček

The paper presents a modification of the equations of Rabinowitsch-Mooney type for an approximate calculation of pressure drop in laminar flow of generalized Newtonian liquid through a straight channel whose cross section forms a simple continuous area. The suitability of the suggested procedure of calculation of pressure drop is demonstrated by the comparison of calculation results with both the published and original results of numerical solution and experiments.


Sign in / Sign up

Export Citation Format

Share Document