noncircular cross section
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 2)

H-INDEX

14
(FIVE YEARS 0)

2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Kenneth J. Ruschak ◽  
Steven J. Weinstein

The fully developed laminar flow of Non-Newtonian fluids in ducts has broad application in engineering. The power-law viscosity model is utilized most often in the engineering literature, but it is deficient for many fluids as it does not admit limiting Newtonian viscosities at low and high shear rates. The goal of this work is to demonstrate two approximate but accurate and efficient methods for computing the pressure gradient in ducts of noncircular cross section for shear-thinning fluids following a general viscosity curve. Both methods predict the pressure gradient to better than 1% as established by full numerical solutions for ten cross-sectional shapes, a result representing an order-of-magnitude improvement over previous approximate methods. In the first method, an approach recently proposed and demonstrated to be accurate for a circular duct is shown to be equally applicable to noncircular ducts. In the second method, a widely used approach for noncircular ducts based on a generalization of the Rabinowitsch–Mooney equation is improved through an alternate evaluation of its parameters. Both methods require one-time numerical solutions of the power-law viscosity model for a duct shape of interest, and the necessary results are tabulated for the ten cross-sectional shapes analyzed. It is additionally demonstrated that the pressure-gradient error of the second method is approximately halved by simply replacing the hydraulic diameter with a viscous diameter obtained from the Hagen–Poiseuille equation.


Author(s):  
Zhe Liu ◽  
Fuqiang Zhou ◽  
Christian Oertel ◽  
Yintao Wei

The three-dimensional dynamic equations of a ring with a noncircular cross-section on an elastic foundation are obtained using the Hamilton variation principle. In contrast to the previous rings on elastic foundation model, the developed model incorporates both the in-plane and out-of-plane bend and the out-of-plane torsion in displacement fields. The errors in the derivation of the initial stress and the work of the internal pressure in previous rings on elastic foundation models have been corrected. The mode expansion was used to obtain the analytical solution of the natural frequency. The initial motivation is to develop a theoretical model for car tire dynamics. Therefore, to validate the proposed model, the in-plane and out-of-plane vibrations of a truck tire have been analyzed using the proposed method. To further verify the accuracy of the model, the results of the theoretical formula are compared with the finite element analysis and modal test, and good agreement can be found.


2017 ◽  
Vol 43 (3) ◽  
pp. 271-279 ◽  
Author(s):  
E. A. Sorokina ◽  
V. P. Lakhin ◽  
L. V. Konovaltseva ◽  
V. I. Ilgisonis

2016 ◽  
Vol 42 (12) ◽  
pp. 1138-1145 ◽  
Author(s):  
V. V. Arsenin ◽  
A. A. Skovoroda

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yongzhao Wang ◽  
Qichang Zhang ◽  
Wei Wang

The mechanical deformation of DNA is very important in many biological processes. In this paper, we consider the reduced Kirchhoff equations of the noncircular cross-section elastic rod characterized by the inequality of the bending rigidities. One family of exact solutions is obtained in terms of rational expressions for classical Jacobi elliptic functions. The present solutions allow the investigation of the dynamical behavior of the system in response to changes in physical parameters that concern asymmetry. The effects of the factor on the DNA conformation are discussed. A qualitative analysis is also conducted to provide valuable insight into the topological configuration of DNA segments.


Sign in / Sign up

Export Citation Format

Share Document