border cells
Recently Published Documents


TOTAL DOCUMENTS

183
(FIVE YEARS 37)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Lauren Penfield ◽  
Denise Montell

Cells migrate collectively through confined environments during development and cancer metastasis. While the nucleus, a large and stiff organelle, impedes cell migration between non-deformable pillars in vitro, its function in vivo may vary depending on the microenvironment. Further, it is unknown how nuclei contribute to collective migration in vivo and whether nuclei in different positions within cell collectives experience different forces. Here, we use border cell migration in the fly ovary as an in vivo model to investigate the effects of confined, collective migration on nuclei and the contribution of nuclear lamins to migration. We found severe yet transient nuclear deformations occur, particularly in the leading cell, as border cells squeeze through tiny crevices between germline cells, termed nurse cells. Leading cells extend protrusions between nurse cells, which may pry open space to allow the cluster to advance. Here we report that the leading cell nuclei deformed as they moved into leading protrusions. Then as protrusions widened, the nucleus recovered a more circular shape. These data suggest that lead cell nuclei may help protrusions expand and thereby enlarge the migration path. To test how nuclei might promote or impede border cell migration, we investigated nuclear lamins, proteins that assemble into intermediate filaments and structurally support the nuclear envelope. Depletion of the Drosophila B-type lamin, Lam, from the outer, motile border cells, but not the inner, nonmotile polar cells, impeded border cell migration, whereas perturbations of the A-type lamin, LamC, did not. While wild type border cell clusters typically have one large leading protrusion as they delaminate from the anterior follicular epithelium, clusters depleted of B-type lamin had multiple, short-lived protrusions, resulting in unproductive cluster movement and failure to progress along the migration path. Further, border cell nuclei depleted of B-type lamins were small, formed blebs, and ruptured. Together, these data indicate that B-type lamin is requied for nuclear integrity, which in turn stabilizes the leading protrusion and promotes overall cluster polarization and collective movement through confined spaces.


2021 ◽  
Author(s):  
Nut Pipatpanyanugoon ◽  
Nicha Wareesawetsuwan ◽  
Sunisa Prasopporn ◽  
Wannapan Poolex ◽  
Trairak Pisitkun ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3046
Author(s):  
Joanna Szewińska ◽  
Elżbieta Różańska ◽  
Ewa Papierowska ◽  
Mateusz Labudda

Proteolysis and structural adjustments are significant for defense against heavy metals. The purpose of this study was to evaluate whether the Al3+ stress alters protease activity and the anatomy of cereale roots. Azocaseinolytic and gelatinolytic measurements, transcript-level analysis of phytocystatins, and observations under microscopes were performed on the roots of Al3+-tolerant rye and tolerant and sensitive triticales exposed to Al3+. In rye and triticales, the azocaseinolytic activity was higher in treated roots. The gelatinolytic activity in the roots of rye was enhanced between 12 and 24 h in treated roots, and decreased at 48 h. The gelatinolytic activity in treated roots of tolerant triticale was the highest at 24 h and the lowest at 12 h, whereas in treated roots of sensitive triticale it was lowest at 12 h but was enhanced at 24 and 48 h. These changes were accompanied by increased transcript levels of phytocystatins in rye and triticale-treated roots. Light microscope analysis of rye roots revealed disintegration of rhizodermis in treated roots at 48 h and indicated the involvement of root border cells in rye defense against Al3+. The ultrastructural analysis showed vacuoles containing electron-dense precipitates. We postulate that proteolytic-antiproteolytic balance and structural acclimation reinforce the fine-tuning to Al3+.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Maureen C Lamb ◽  
Chathuri P Kaluarachchi ◽  
Thiranjeewa I Lansakara ◽  
Samuel Q Mellentine ◽  
Yiling Lan ◽  
...  

A key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using Drosophila border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo. Loss of Fascin results in: increased activated Myosin on the border cells and their substrate, the nurse cells; decreased border cell Myosin dynamics; and increased nurse cell stiffness as measured by atomic force microscopy. Reducing Myosin restores on-time border cell migration in fascin mutant follicles. Further, Fascin’s actin bundling activity is required to limit Myosin activation. Surprisingly, we find that Fascin regulates Myosin activity in the border cells to control nurse cell stiffness to promote migration. Thus, these data shift the paradigm from a substrate stiffness-centric model of regulating migration, to uncover that collectively migrating cells play a critical role in controlling the mechanical properties of their substrate in order to promote their own migration. This understudied means of mechanical regulation of migration is likely conserved across contexts and organisms, as Fascin and Myosin are common regulators of cell migration.


Author(s):  
Nirupama Kotian ◽  
Katie M Troike ◽  
Kristen N Curran ◽  
Justin D Lathia ◽  
Jocelyn A McDonald

Abstract Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma, which infiltrates the surrounding brain parenchyma leading to tumor growth and poor patient outcomes. Drosophila border cells, which migrate as a small cell cluster in the developing ovary, are a well-studied and genetically accessible model used to identify general mechanisms that control collective cell migration within native tissue environments. Most cell collectives remain cohesive through a variety of cell-cell adhesion proteins during their migration through tissues and organs. In this study, we first identified cell adhesion, cell matrix, cell junction, and associated regulatory genes that are expressed in human brain tumors. We performed RNAi knockdown of the Drosophila orthologs in border cells to evaluate if migration and/or cohesion of the cluster was impaired. From this screen, we identified eight adhesion-related genes that disrupted border cell collective migration upon RNAi knockdown. Bioinformatics analyses further demonstrated that subsets of the orthologous genes were elevated in the margin and invasive edge of human glioblastoma patient tumors. These data together show that conserved cell adhesion and adhesion regulatory proteins with potential roles in tumor invasion also modulate collective cell migration. This dual screening approach for adhesion genes linked to glioblastoma and border cell migration thus may reveal conserved mechanisms that drive collective tumor cell invasion.


2021 ◽  
Vol 15 ◽  
Author(s):  
Richard D. Rabbitt ◽  
Holly A. Holman

Hair cells in the mammalian inner ear sensory epithelia are surrounded by supporting cells which are essential for function of cochlear and vestibular systems. In mice, support cells exhibit spontaneous intracellular Ca2+ transients in both auditory and vestibular organs during the first postnatal week before the onset of hearing. We recorded long lasting (>200 ms) Ca2+ transients in cochlear and vestibular support cells in neonatal mice using the genetic calcium indicator GCaMP5. Both cochlear and vestibular support cells exhibited spontaneous intracellular Ca2+ transients (GCaMP5 ΔF/F), in some cases propagating as waves from the apical (endolymph facing) to the basolateral surface with a speed of ∼25 μm per second, consistent with inositol trisphosphate dependent calcium induced calcium release (CICR). Acetylcholine evoked Ca2+ transients were observed in both inner border cells in the cochlea and vestibular support cells, with a larger change in GCaMP5 fluorescence in the vestibular support cells. Adenosine triphosphate evoked robust Ca2+ transients predominantly in the cochlear support cells that included Hensen’s cells, Deiters’ cells, inner hair cells, inner phalangeal cells and inner border cells. A Ca2+ event initiated in one inner border cells propagated in some instances longitudinally to neighboring inner border cells with an intercellular speed of ∼2 μm per second, and decayed after propagating along ∼3 cells. Similar intercellular propagation was not observed in the radial direction from inner border cell to inner sulcus cells, and was not observed between adjacent vestibular support cells.


2021 ◽  
Author(s):  
Nirupama Kotian ◽  
Katie M. Troike ◽  
Kristen N. Curran ◽  
Justin D. Lathia ◽  
Jocelyn A McDonald

Migrating cell collectives are key to embryonic development but also contribute to invasion and metastasis of a variety of cancers. Cell collectives can invade deep into tissues, leading to tumor progression and resistance to therapies. Collective cell invasion is also observed in the lethal brain tumor glioblastoma, which infiltrates the surrounding brain parenchyma leading to tumor growth and poor patient outcomes. Drosophila border cells, which migrate as a small cell cluster in the developing ovary, are a well-studied and genetically accessible model used to identify general mechanisms that control collective cell migration within native tissue environments. Most cell collectives remain cohesive through a variety of cell-cell adhesion proteins during their migration through tissues and organs. In this study, we first identified cell adhesion, cell junction, and associated regulatory genes that are expressed in human brain tumors. We performed RNAi knockdown of the Drosophila orthologs in border cells to evaluate if migration and/or cohesion of the cluster was impaired. From this screen, we identified eight adhesion genes that disrupted border cell collective migration upon RNAi knockdown. Bioinformatics analyses further demonstrated that subsets of the orthologous genes were elevated in the margin and invasive edge of human glioblastoma patient tumors. These data together show that conserved cell adhesion and adhesion regulatory proteins with potential roles in tumor invasion also modulate collective cell migration. This dual screening approach for adhesion genes linked to glioblastoma and border cell migration thus may reveal conserved mechanisms that drive collective tumor cell invasion.


2021 ◽  
Author(s):  
Mikiko Inaki ◽  
Kenji Matsuno

Delamination requires cells to undergo changes in cell-cell adhesion and in cell polarity, motility, and protrusions. This complex process must be precisely regulated during development as well as in pathogenic conditions. To determine the requirements for epithelial delamination, we analyzed the delamination of Drosophila ovary border cells, in which cells delaminate from the epithelial layer and begin to migrate collectively as is also seen in cancer metastasis. We used live imaging to examine cellular dynamics in delamination-defective mutants during the period in which delamination occurs in the wild-type ovary. We found that border cells in slow border cells (slbo), a delamination-defective mutant, lacked the properties of invasive cellular extensions but acquired motility while JAK/STAT-inhibited border cells lost both cellular properties, suggesting that the invasiveness and motility required for delamination are regulated independently. Our reconstruction experiments showed that motility is not a prerequisite for acquiring invasiveness.


2021 ◽  
Author(s):  
Maureen C. Lamb ◽  
Chathuri P. Kaluarachchi ◽  
Thiranjeewa I. Lansakara ◽  
Yiling Lan ◽  
Alexei V. Tivanski ◽  
...  

AbstractA key regulator of collective cell migrations, which drive development and cancer metastasis, is substrate stiffness. Increased substrate stiffness promotes migration and is controlled by Myosin. Using Drosophila border cell migration as a model of collective cell migration, we identify, for the first time, that the actin bundling protein Fascin limits Myosin activity in vivo. Loss of Fascin results in: increased activated Myosin on the border cells and their substrate, the nurse cells; decreased border cell Myosin dynamics; and increased nurse cell stiffness as measured by atomic force microscopy. Reducing Myosin restores on-time border cell migration in fascin mutant follicles. Further, Fascin’s actin bundling activity is required to limit Myosin activation. Surprisingly, we find that Fascin regulates Myosin activity in the border cells to control nurse cell stiffness to promote migration. Thus, these data shift the paradigm from a substrate stiffness-centric model of regulating migration, to uncover that collectively migrating cells play a critical role in controlling the mechanical properties of their substrate in order to promote their own migration. This new means of mechanical regulation of migration is likely conserved across contexts and organisms, as Fascin and Myosin are common regulators of cell migration.


Sign in / Sign up

Export Citation Format

Share Document