The cause of the emission of the negative band system of nitrogen from the upper atmosphere during twilight is investigated. A study is made of the two possible excitation mechanisms, N 2 ( X 1 Ʃ g + ) + hv →N 2 + ( B 2 Ʃ u + ) + e and N 2 + ( X 2 Ʃ g + ) + hv →N 2 + ( B 2 Ʃ u + ). It is shown that the latter is far more effective than the former, irrespective of the assumptions adopted regarding the solar flux in the unobservable spectral region. From the transition probability associated with it (which is evaluated in the appendix) combined with various intensity estimates, an upper limit is obtained for the number of N 2 + ions normally present in the E and F layers during twilight. It appears that N 2 + ions form but a minute fraction of the total ion content. The significance of this in the theory of the formation of the ionized layers is discussed. The simplest interpretation is that ionization of molecular nitrogen is unimportant; and a reasonable scheme that invokes only the ionization of oxygen atoms and molecules is available. However, by introducing certain arbitrary assumptions a more elaborate interpretation is conceivable so that the view that the E layer arises from the action of high-energy coronal photons, which ionize all atmospheric constituents, cannot be finally rejected. Various aspects of the layers are discussed, and observational and experimental work, which might yield evidence on the ionization mechanisms operative, is suggested. It is pointed out that the remarkable rarity of N 2 + ions proves conclusively that recombination between the charged particles present in the ionosphere cannot be the origin of the nocturnal radiation of the nitrogen band systems. On some occasions the resonance emission at twilight is of unusually high intensity. It is presumed that this is due to incident charged particles increasing the concentration of N 2 + ions. The possible contribution that these charged particles may make to the night-sky light by direct excitation collisions is briefly examined. Sunlit aurorae (which are essentially similar to the twilight flash) are also discussed.


1992 ◽  
Vol 63 (6) ◽  
pp. 3293-3297 ◽  
Author(s):  
W. Knap ◽  
D. Dur ◽  
A. Raymond ◽  
C. Meny ◽  
J. Leotin ◽  
...  

Author(s):  
Masashi Nashimoto ◽  
Makoto Hattori ◽  
Ricardo Génova-Santos ◽  
Frédérick Poidevin

Abstract Complete studies of the radiative processes of thermal emission from the amorphous dust from microwave through far-infrared wavebands are presented by taking into account, self-consistently for the first time, the standard two-level systems (TLS) model of amorphous materials. The observed spectral energy distributions (SEDs) for the Perseus molecular cloud (MC) and W 43 from microwave through far-infrared are fitted with the SEDs calculated with the TLS model of amorphous silicate. We have found that the model SEDs reproduce the observed properties of the anomalous microwave emission (AME) well. The present result suggests an alternative interpretation for the AME being carried by the resonance emission of the TLS of amorphous materials without introducing new species. Simultaneous fitting of the intensity and polarization SEDs for the Perseus MC and W 43 are also performed. The amorphous model reproduces the overall observed feature of the intensity and polarization SEDs of the Perseus MC and W 43. However, the model’s predicted polarization fraction of the AME is slightly higher than the QUIJOTE upper limits in several frequency bands. A possible improvement of our model to resolve this problem is proposed. Our model predicts that interstellar dust is amorphous materials with very different physical characteristics compared with terrestrial amorphous materials.


1998 ◽  
Vol 109 (13) ◽  
pp. 5221-5230 ◽  
Author(s):  
Paresh C. Ray ◽  
Michael F. Arendt ◽  
Laurie J. Butler

2016 ◽  
Vol 655-656 ◽  
pp. 91-95 ◽  
Author(s):  
Lucas Modesto-Costa ◽  
Prasanta Kumar Mukherjee ◽  
Sylvio Canuto

2020 ◽  
Vol 28 (15) ◽  
pp. 22791
Author(s):  
Ken Araki ◽  
Richard Z. Zhang

Sign in / Sign up

Export Citation Format

Share Document