scholarly journals Lessons from the total synthesis of (±)-phalarine: Insights into the mechanism of the Pictet–Spengler reaction

2010 ◽  
Vol 82 (9) ◽  
pp. 1735-1748 ◽  
Author(s):  
John D. Trzupek ◽  
Chaomin Li ◽  
Collin Chan ◽  
Brendan M. Crowley ◽  
Annekatrin C. Heimann ◽  
...  

The furanobisindole alkaloid, phalarine, possesses a unique structural framework within the alkaloid family of natural products. Our laboratory recently disclosed the racemic total synthesis of phalarine, featuring an efficient azaspiroindolenine rearrangement; this achievement is revisited in detail. Upon completion of the first-generation total synthesis, we explored some interesting mechanism-level issues with regard to the key azaspiroindolenine rearrangement. These investigations provided valuable insights into the mechanism of racemization during the azaspiroindolenine rearrangement en route to synthetic phalarine. In addition, in the course of these studies, we demonstrated the Pictet–Spengler capture reaction for C2-aryl indoles, and successfully isolated the elusive azaspiroindolenine intermediate of the Pictet–Spengler reaction. Key insights into the remarkably subtle stereoelectronics that govern this rearrangement for C2-arylated indoles are discussed.

Synlett ◽  
2020 ◽  
Vol 31 (04) ◽  
pp. 327-333 ◽  
Author(s):  
Jesper L. Kristensen ◽  
Sebastian Clementson ◽  
Mikkel Jessing ◽  
Paulo J. Vital

Erythrina alkaloids were identified at the end of the 19th century and today, more than 100 members of the erythrinane family have been isolated. They are characterized by a unique tetracyclic, α-tertiary spiroamine scaffold. Herein we detail our efforts towards the development of a divergent enantioselective synthesis of (+)-dihydro-β-erythroidine (DHβE) – one of the most prominent members of this intriguing family of natural products.1 Introduction2 Synthetic Strategy2.1 First Generation2.2 Second Generation2.3 Third Generation2.3.1 Radical Endgame2.3.2 Completion of the Total Synthesis3 Conclusion


2020 ◽  
Vol 17 ◽  
Author(s):  
Majid M. Heravi ◽  
Tayebe Momeni ◽  
Vahideh Zadsirjan ◽  
Leila Mohammadi

: Dess–Martin periodinane (DMP), is a commercially available chemical, frequently being utilized as a mild oxidative agent for the selective oxidation of primary and secondary alcohols to their corresponding aldehydes and ketones, respectively. DMP shows several merits over other common oxidative agent such as chromium- and DMSO-based oxidants, thus it is habitually employed in the total synthesis of natural products. In this review, we try to underscore the applications of DMP as an effective oxidant in an appropriate step (steps) in the multistep total synthesis of natural products.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 720
Author(s):  
Satomi Niwayama

Symmetric organic compounds are generally obtained inexpensively, and therefore they can be attractive building blocks for the total synthesis of various pharmaceuticals and natural products. The drawback is that discriminating the identical functional groups in the symmetric compounds is difficult. Water is the most environmentally benign and inexpensive solvent. However, successful organic reactions in water are rather limited due to the hydrophobicity of organic compounds in general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile strategies for the synthesis of a variety of significant organic compounds. This review focuses on the recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media without utilizing enzymes.


2021 ◽  
Vol 57 (27) ◽  
pp. 3307-3322
Author(s):  
Debobrata Paul ◽  
Ashis Kundu ◽  
Sanu Saha ◽  
Rajib Kumar Goswami

This feature article highlights total synthesis as one of the reliable tools for the structural confirmation of natural products.


2021 ◽  
Vol 67 ◽  
pp. 152895
Author(s):  
Shu Takahashi ◽  
Aoi Kimishima ◽  
Tomoyasu Hirose ◽  
Takeshi Yamada ◽  
Akihiro Sugawara ◽  
...  

ChemInform ◽  
2007 ◽  
Vol 38 (41) ◽  
Author(s):  
Ken-ichi Takao ◽  
Shin-ya Aoki ◽  
Kin-ichi Tadano

Sign in / Sign up

Export Citation Format

Share Document