scholarly journals Analysis of the vorticity tube segment in fluid turbulence

2019 ◽  
Vol 50 (4) ◽  
pp. 040003 ◽  
Author(s):  
LiPo WANG
2008 ◽  
Vol 10 (8) ◽  
pp. 083007 ◽  
Author(s):  
Dastgeer Shaikh ◽  
P K Shukla

2021 ◽  
Author(s):  
Xueyun Wang ◽  
Xueqiao Xu ◽  
Philip B Snyder ◽  
Zeyu Li

Abstract The BOUT++ six-field turbulence code is used to simulate the ITER 11.5MA hybrid scenario and a brief comparison is made among ITER baseline, hybrid and steady-state operation (SSO) scenarios. Peeling-ballooning instabilities with different toroidal mode numbers dominate in different scenarios and consequently yield different types of ELMs. The energy loss fractions (ΔWped/Wped) caused by unmitigated ELMs in the baseline and hybrid scenarios are large (~2%) while the one in the SSO scenario is dramatically smaller (~1%), which are consistent with the features of type-I ELMs and grassy ELMs respectively. The intra ELM divertor heat flux width in the three scenarios given by the simulations is larger than the estimations for inter ELM phase based on Goldston’s heuristic drift model. The toroidal gap edge melting limit of tungsten monoblocks of divertor targets imposes constraints on ELM energy loss, giving that the ELM energy loss fraction should be smaller than 0.4%, 1.0%, and 1.2% for ITER baseline, hybrid and SSO scenarios, correspondingly. The simulation shows that only the SSO scenario with grassy ELMs may satisfy the constraint.


2017 ◽  
Vol 83 (3) ◽  
Author(s):  
S. Chen ◽  
G. Maero ◽  
M. Romé

The paper investigates the dynamics of magnetized non-neutral (electron) plasmas subjected to external electric field perturbations. A two-dimensional (2-D) particle-in-cell code is effectively exploited to model this system with a special attention to the role that non-axisymmetric, multipolar radio frequency (RF) drives applied to the cylindrical (circular) boundary play on the insurgence of azimuthal instabilities and the subsequent formation of coherent structures preventing the relaxation to a fully developed turbulent state, when the RF fields are chosen in the frequency range of the low-order fluid modes themselves. The isomorphism of such system with a 2-D inviscid incompressible fluid offers an insight into the details of forced 2-D fluid turbulence. The choice of different initial density (i.e. fluid vorticity) distributions allows for a selection of conditions where different levels of turbulence and intermittency are expected and a range of final states is achieved. Integral and spectral quantities of interest are computed along the flow using a multiresolution analysis based on a wavelet decomposition of both enstrophy and energy 2-D maps. The analysis of a variety of cases shows that the qualitative features of turbulent relaxation are similar in conditions of both free and forced evolution; at the same time, fine details of the flow beyond the self-similarity turbulence properties are highlighted in particular in the formation of structures and their timing, where the influence of the initial conditions and the effect of the external forcing can be distinguished.


1994 ◽  
Vol 12 (12) ◽  
pp. 1127-1138 ◽  
Author(s):  
E. Marsch ◽  
C. Y. Tu

Abstract. The probability distributions of field differences ∆x(τ)=x(t+τ)-x(t), where the variable x(t) may denote any solar wind scalar field or vector field component at time t, have been calculated from time series of Helios data obtained in 1976 at heliocentric distances near 0.3 AU. It is found that for comparatively long time lag τ, ranging from a few hours to 1 day, the differences are normally distributed according to a Gaussian. For shorter time lags, of less than ten minutes, significant changes in shape are observed. The distributions are often spikier and narrower than the equivalent Gaussian distribution with the same standard deviation, and they are enhanced for large, reduced for intermediate and enhanced for very small values of ∆x. This result is in accordance with fluid observations and numerical simulations. Hence statistical properties are dominated at small scale τ by large fluctuation amplitudes that are sparsely distributed, which is direct evidence for spatial intermittency of the fluctuations. This is in agreement with results from earlier analyses of the structure functions of ∆x. The non-Gaussian features are differently developed for the various types of fluctuations. The relevance of these observations to the interpretation and understanding of the nature of solar wind magnetohydrodynamic (MHD) turbulence is pointed out, and contact is made with existing theoretical concepts of intermittency in fluid turbulence.


2015 ◽  
Vol 55 (2) ◽  
pp. 128-135 ◽  
Author(s):  
Peter Ondac ◽  
Jan Horacek ◽  
Jakub Seidl ◽  
Petr Vondrácek ◽  
Hans Werner Müller ◽  
...  

<!-- p, li { white-space: pre-wrap; } --><p style="text-indent: 0px; margin: 0px;">In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtained by reciprocating probe measurements from the two machines. Agreements were found in radial profiles of mean plasma potential and temperature, and in a level of density fluctuations. Disagreements, however, were found in the level of plasma potential and temperature fluctuations. This implicates a need for an extension of the ESEL model from 2D to 3D to fully resolve the parallel dynamics, and the coupling from the plasma to the sheath.</p>


1991 ◽  
Vol 44 (10) ◽  
pp. 6480-6489 ◽  
Author(s):  
Tsutomu Sanada

2013 ◽  
Vol 387 ◽  
pp. 180-184
Author(s):  
Ya Dong Li ◽  
Hai Hong Mo ◽  
Jun Shen Chen

The numerical simulation analysis on the whole process of the tube immersing is researched, which use computational fluid dynamics method, is based on RNG k~ε turbulence model. The analysis shows that: additional pressure of tube lateral wall depends on the changed flow field cause by tube immersing; through the analysis, it have explored the special position of additional pressure changes in the process of immersing; it also shows some problems should be paid attention, through analysis the stress of special position.


Sign in / Sign up

Export Citation Format

Share Document