scholarly journals The significance of multiscale analysis in the study of Copernican-aged tectonic features on the Moon

2015 ◽  
Vol 45 (3) ◽  
pp. 039601-039601
Author(s):  
ZhiYong XIAO ◽  
ZuoXun ZENG ◽  
Yu YANG ◽  
Wei CHEN ◽  
XiaoMing XU
2019 ◽  
Vol 11 (22) ◽  
pp. 2696
Author(s):  
Xiangzhao Zeng ◽  
Chuanrong Li

The Moon is a stable light source for the radiometric calibration of satellite sensors. It acts as a diffuse panel that reflects sunlight in all directions, however, the lunar surface is heterogeneous due to its topography and different mineral content and chemical composition at different locations, resulting in different optical properties. In order to perform radiometric calibration using the Moon, a lunar irradiance model using different observation geometry is required. Currently, two lunar irradiance models exist, namely, the Robotic Lunar Observatory (ROLO) and the Miller and Turner 2009 (MT2009). The ROLO lunar irradiance model is widely used as the radiometric standard for on-orbit sensors. The MT2009 lunar irradiance model is popular for remote sensing at night, however, the original version of the MT2009 lunar irradiance model takes less consideration of the heterogeneous lunar surface and lunar topography. Since the heterogeneity embedded in the lunar surface is the key to the improvement of the lunar irradiance model, this study analyzes the influence of the heterogeneous surface on the irradiance of moonlight based on model data at different scales. A heterogeneous correction factor is defined to describe the impact of the heterogeneous lunar surface on lunar irradiance. On the basis of the analysis, the following conclusions can be made. First, the influence of heterogeneity in the waning hemisphere is greater than that in waxing hemisphere under all 32 wavelengths of the ROLO filters. Second, the influence of heterogeneity embedded in the lunar surface exerts less impact on lunar irradiance at lower resolution. Third, the heterogeneous correction factor is scale independent. Finally, the lunar irradiance uncertainty introduced by topography is very small and decreases as the resolution of model data decreases due to the loss of topographic information.


Author(s):  
Linda T. Elkins-Tanton ◽  
David Bercovici

The lack of contraction features on the Moon has been used to argue that the Moon underwent limited secular cooling, and thus had a relatively cool initial state. A cool early state in turn limits the depth of the lunar magma ocean. Recent GRAIL gravity measurements, however, suggest that dikes were emplaced in the lower crust, requiring global lunar expansion. Starting from the magma ocean state, we show that solidification of the lunar magma ocean would most likely result in expansion of the young lunar crust, and that viscous relaxation of the crust would prevent early tectonic features of contraction or expansion from being recorded permanently. The most likely process for creating the expansion recorded by the dikes is melting during cumulate overturn of the newly solidified lunar mantle.


2021 ◽  
Vol 40 (2) ◽  
pp. 461-502
Author(s):  
A. M. C. ŞENGÖR

The very first scientific paper by the great Austrian geologist Eduard Suess (1831–1914), the dean of geologists internationally during his lifetime, treats the graptolites of Bohemia (the ‘Barrandian’). This paper and most of his subsequent papers on palaeontology are accompanied by superb drawings of his observations in which Suess took great care not to insert himself between Nature as he perceived it in the framework of the knowledge of his day and his readers. In his drawings, he exercised what the great German geologist Hans Cloos later called ‘the art of leaving out’. This meant that in the drawings, the parts not relevant to the discussion are left only in outline, whereas parts he wished to highlight are brought to the fore by careful shading; but even the parts left only in outline are not schematic, instead they are careful reconstructions true to Nature as much as the material allowed it. This characteristic of Suess’ illustrations is seen also in his later field sketches concerning stratigraphy and structural geology and also in his depiction of the large tectonic features of our globe representing a guide to his manner of thinking. His illustrations in his early palaeontological work foreshadowed the later global geologist’s approach to our planet (and the Moon!) as a whole.


1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.


1962 ◽  
Vol 14 ◽  
pp. 441-444 ◽  
Author(s):  
J. E. Geake ◽  
H. Lipson ◽  
M. D. Lumb

Work has recently begun in the Physics Department of the Manchester College of Science and Technology on an attempt to simulate lunar luminescence in the laboratory. This programme is running parallel with that of our colleagues in the Manchester University Astronomy Department, who are making observations of the luminescent spectrum of the Moon itself. Our instruments are as yet only partly completed, but we will describe briefly what they are to consist of, in the hope that we may benefit from the comments of others in the same field, and arrange to co-ordinate our work with theirs.


1962 ◽  
Vol 14 ◽  
pp. 415-418
Author(s):  
K. P. Stanyukovich ◽  
V. A. Bronshten

The phenomena accompanying the impact of large meteorites on the surface of the Moon or of the Earth can be examined on the basis of the theory of explosive phenomena if we assume that, instead of an exploding meteorite moving inside the rock, we have an explosive charge (equivalent in energy), situated at a certain distance under the surface.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


1962 ◽  
Vol 14 ◽  
pp. 113-115
Author(s):  
D. W. G. Arthur ◽  
E. A. Whitaker

The cartography of the lunar surface can be split into two operations which can be carried on quite independently. The first, which is also the most laborious, is the interpretation of the lunar photographs into the symbolism of the map, with the addition of fine details from telescopic sketches. An example of this kind of work is contained in Johann Krieger'sMond Atlaswhich consists of photographic enlargements in which Krieger has sharpened up the detail to accord with his telescopic impressions. Krieger did not go on either to convert the photographic picture into the line symbolism of a map, or to place this picture on any definite map projection.


1962 ◽  
Vol 14 ◽  
pp. 39-44
Author(s):  
A. V. Markov

Notwithstanding the fact that a number of defects and distortions, introduced in transmission of the images of the latter to the Earth, mar the negatives of the reverse side of the Moon, indirectly obtained on 7 October 1959 by the automatic interplanetary station (AIS), it was possible to use the photometric measurements of the secondary (terrestrial) positives of the reverse side of the Moon in the experiment of the first comparison of the characteristics of the surfaces of the visible and invisible hemispheres of the Moon.


Sign in / Sign up

Export Citation Format

Share Document