scholarly journals Convergence properties analysis of the indirect optimization techniques for solar sail trajectory optimization

2019 ◽  
Vol 49 (8) ◽  
pp. 084505
Author(s):  
Pan SUN ◽  
HongWei YANG ◽  
Shuang LI
2015 ◽  
Vol 35 (8) ◽  
pp. 1000-1019 ◽  
Author(s):  
Andrew D. Marchese ◽  
Russ Tedrake ◽  
Daniela Rus

The goal of this work is to develop a soft-robotic manipulation system that is capable of autonomous, dynamic, and safe interactions with humans and its environment. First, we develop a dynamic model for a multi-body fluidic elastomer manipulator that is composed entirely from soft rubber and subject to the self-loading effects of gravity. Then, we present a strategy for independently identifying all of the unknown components of the system; these are the soft manipulator, its distributed fluidic elastomer actuators, as well as the drive cylinders that supply fluid energy. Next, using this model and trajectory-optimization techniques we find locally-optimal open-loop policies that allow the system to perform dynamic maneuvers we call grabs. In 37 experimental trials with a physical prototype, we successfully perform a grab 92% of the time. Last, we introduce the idea of static bracing for a soft elastomer arm and discuss how forming environmental braces might be an effective manipulation strategy for this class of robots. By studying such an extreme example of a soft robot, we can begin to solve hard problems inhibiting the mainstream use of soft machines.


2021 ◽  
pp. 027836492110377
Author(s):  
Christoforos Mavrogiannis ◽  
Ross A. Knepper

We focus on decentralized navigation among multiple non-communicating agents in continuous domains without explicit traffic rules, such as sidewalks, hallways, or squares. Following collision-free motion in such domains requires effective mechanisms of multiagent behavior prediction. Although this prediction problem can be shown to be NP-hard, humans are often capable of solving it efficiently by leveraging sophisticated mechanisms of implicit coordination. Inspired by the human paradigm, we propose a novel topological formalism that explicitly models multiagent coordination. Our formalism features both geometric and algebraic descriptions enabling the use of standard gradient-based optimization techniques for trajectory generation but also symbolic inference over coordination strategies. In this article, we contribute (a) HCP (Hamiltonian Coordination Primitives), a novel multiagent trajectory-generation pipeline that accommodates spatiotemporal constraints formulated as symbolic topological specifications corresponding to a desired coordination strategy; (b) HCPnav, an online planning framework for decentralized collision avoidance that generates motion by following multiagent trajectory primitives corresponding to high-likelihood, low-cost coordination strategies. Through a series of challenging trajectory-generation experiments, we show that HCP outperforms a trajectory-optimization baseline in generating trajectories of desired topological specifications in terms of success rate and computational efficiency. Finally, through a variety of navigation experiments, we illustrate the efficacy of HCPnav in handling challenging multiagent navigation scenarios under homogeneous or heterogeneous agents across a series of environments of different geometry.


Sign in / Sign up

Export Citation Format

Share Document