soft manipulator
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 54)

H-INDEX

10
(FIVE YEARS 2)

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 130
Author(s):  
Yinglong Chen ◽  
Qiang Sun ◽  
Qiang Guo ◽  
Yongjun Gong

Compared with rigid robots, soft robots have better adaptability to the environment because of their pliability. However, due to the lower structural stiffness of the soft manipulator, the posture of the manipulator is usually decided by the weight and the external load under operating conditions. Therefore, it is necessary to conduct dynamics modeling and movement analysis of the soft manipulator. In this paper, a fabric reinforced soft manipulator driven by a water hydraulic system is firstly proposed, and the dynamics of both the soft manipulator and hydraulic system are considered. Specifically, a dynamic model of the soft manipulator is established based on an improved Newton–Euler iterative method, which comprehensively considers the influence of inertial force, elastic force, damping force, as well as combined bending and torsion moments. The dynamics of the water hydraulic system consider the effects of cylinder inertia, friction, and water response. Finally, the accuracy of the proposed dynamic model is verified by comparing the simulation results with the experimental data about the steady and dynamic characteristics of the soft manipulator under various conditions. The results show that the maximum sectional error is about 0.0245 m and that the maximum cumulative error is 0.042 m, which validate the effectiveness of the proposed model.


Robotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Kelly Low ◽  
Devin R. Berg ◽  
Perry Y. Li

In this paper, the design and testing of a novel valve for the intuitive spatial control of soft or continuum manipulators are presented. The design of the valve is based on the style of a hydraulic flapper valve, but with simultaneous control of three pressure feed points, which can be used to drive three antagonistically arranged hydraulic actuators for positioning soft robots. The variable control orifices are arranged in a rotationally symmetric radial pattern to allow for an inline mounting configuration of the valve within the body of a manipulator. Positioning the valve ring at various 3D configurations results in different pressurizations of the actuators and corresponding spatial configurations of the manipulator. The design of the valve is suitable for miniaturization and use in applications with size constraints such as small soft manipulators and surgical robotics. Experimental validation showed that the performance of the valve can be reasonably modeled and can effectively drive an antagonistic arrangement of three actuators for soft manipulator control.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 363
Author(s):  
Guangcheng Zhang ◽  
Shenchen Li ◽  
Yi Wu ◽  
Mingkang Zhu

Mitigating fatigue damage and improving grasping performance are the two main challenging tasks of applying the soft manipulator into industrial production. In this paper, the grasping position optimization-based control strategy is proposed for the soft manipulator and the corresponding characteristics are studied theoretically and experimentally. Specifically, based on the simulation, the resultant stress of step-function-type channels at the same pressure condition that was smallest compared with those of sine-function- and ramp-function-type channels, hence, a pneumatic network with step-function-type channels was selected for the proposed soft manipulator. Furthermore, in order to improve the grasping performance, the kinematics, mechanical, and grasping modeling for the soft manipulator were established, and a control strategy considering the genetic algorithm is introduced to detect the optimal position of the soft manipulator. The corresponding fabrication process and experiments were conducted to cross verify the results of the modeling and the control strategy. It is demonstrated that the internal pressure of the soft manipulator was reduced by 13.05% at the optimal position, which effectively helped mitigate the fatigue damage of the soft manipulator and prolonged the lifespan.


2021 ◽  
Author(s):  
Xiaoqian Chen ◽  
Xiang Zhang ◽  
Yiyong Huang ◽  
Lu Cao ◽  
Jinguo Liu
Keyword(s):  

2021 ◽  
Author(s):  
Andrea Centurelli ◽  
Alessandro Rizzo ◽  
Silvia Tolu ◽  
Egidio Falotico

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 303
Author(s):  
Likun Gao ◽  
Yanlin He ◽  
Hangwei Zhu ◽  
Guangkai Sun ◽  
Lianqing Zhu

To meet the practical application requirements of cardiac fixation during off-pump coronary artery bypass surgery, a soft cardiac fixator with a flexible arm was previously designed. To enable the soft cardiac fixator to adapt to uncertain external forces, this study evaluates the variable-stiffness performance of the flexible arm. First, the flexible arm was simplified as a soft silicone manipulator measuring 60 mm × 90 mm × 120 mm, which can actuate, soften, or stiffen independently along the length of the arm by combining granular jamming with input pressure. Then, the soft manipulator was modelled as a cantilever beam to analyse its variable-stiffness performance with granular jamming. Next, based on theoretical analysis and calculations, many experiments were conducted to evaluate the variable-stiffness performance of the soft manipulator. The experimental results demonstrated that the variable-stiffness performance is influenced by the flexible arm length, the size of the granules, and the input pressure.


2021 ◽  
Vol 15 (5) ◽  
pp. 696-705
Author(s):  
Mohamed Tahir Shoani ◽  
Mohamed Najib Ribuan ◽  
Ahmad Athif Mohd Faudzi ◽  
◽  
◽  
...  

Soft continuum manipulators are comprised of flexible materials in a serpentine shape. Such manipulators can be controlled mechanically through tendons or pneumatic muscles. Continuum manipulators utilizing tendons are traditionally formed in a thick cross section, which presents limitations in achieving a high bending range as well as difficulties for storage and transportation. This study introduces a continuum manipulator comprised of two thin plastic bands and driven by a tendon to provide a bending action. The manipulator’s thin body form enables it to be rolled up for storage and transportation. Experimental results on different section lengths show the possibility of achieving a horizontal displacement of up to 34% of the bending-segment’s length, and a full closed-loop curvature for most segments. However, the results also indicated an elongation of the tip paths owing to gravity. These results, in addition to the manipulator’s flexibility and light weight features, confirm its suitability for applications in space and underwater environments.


Author(s):  
Hui Yang ◽  
Jiaqi Liu ◽  
Xi Fang ◽  
Xingyu Chen ◽  
Zheyuan Gong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document