Hamiltonian coordination primitives for decentralized multiagent navigation

2021 ◽  
pp. 027836492110377
Author(s):  
Christoforos Mavrogiannis ◽  
Ross A. Knepper

We focus on decentralized navigation among multiple non-communicating agents in continuous domains without explicit traffic rules, such as sidewalks, hallways, or squares. Following collision-free motion in such domains requires effective mechanisms of multiagent behavior prediction. Although this prediction problem can be shown to be NP-hard, humans are often capable of solving it efficiently by leveraging sophisticated mechanisms of implicit coordination. Inspired by the human paradigm, we propose a novel topological formalism that explicitly models multiagent coordination. Our formalism features both geometric and algebraic descriptions enabling the use of standard gradient-based optimization techniques for trajectory generation but also symbolic inference over coordination strategies. In this article, we contribute (a) HCP (Hamiltonian Coordination Primitives), a novel multiagent trajectory-generation pipeline that accommodates spatiotemporal constraints formulated as symbolic topological specifications corresponding to a desired coordination strategy; (b) HCPnav, an online planning framework for decentralized collision avoidance that generates motion by following multiagent trajectory primitives corresponding to high-likelihood, low-cost coordination strategies. Through a series of challenging trajectory-generation experiments, we show that HCP outperforms a trajectory-optimization baseline in generating trajectories of desired topological specifications in terms of success rate and computational efficiency. Finally, through a variety of navigation experiments, we illustrate the efficacy of HCPnav in handling challenging multiagent navigation scenarios under homogeneous or heterogeneous agents across a series of environments of different geometry.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yu Xu ◽  
Lin Xiao ◽  
Dingcheng Yang ◽  
Laurie Cuthbert ◽  
Yapeng Wang

Wireless communications with unmanned aerial vehicles (UAVs) is a promising technology offering potential high mobility and low cost. This paper studies a UAV-enabled communication system, in which a fixed-wing UAV is deployed to collect information from a group of distributed ground terminals (GTs). Considering the requirements for quality of service (QoS) (i.e., the throughput of each GT is above a given threshold) and GT scheduling, we maximize the energy efficiency (EE) of the UAV in bits/Joule by optimizing the UAV’s flight trajectory. In this paper, a mixed integer nonconvex optimization problem is formulated. As that is difficult to solve, we divide the formulated problem into two subproblems and apply standard linear programming (LP) and successive convex optimization techniques. We further propose an efficient iterative algorithm that jointly optimizes GT scheduling and the UAV’s trajectory. Moreover, we set two special cases as benchmarks to measure the performance of the proposed design. The numerical results show that our proposed design achieves much better performance than the other two benchmark designs.


2015 ◽  
Vol 35 (8) ◽  
pp. 1000-1019 ◽  
Author(s):  
Andrew D. Marchese ◽  
Russ Tedrake ◽  
Daniela Rus

The goal of this work is to develop a soft-robotic manipulation system that is capable of autonomous, dynamic, and safe interactions with humans and its environment. First, we develop a dynamic model for a multi-body fluidic elastomer manipulator that is composed entirely from soft rubber and subject to the self-loading effects of gravity. Then, we present a strategy for independently identifying all of the unknown components of the system; these are the soft manipulator, its distributed fluidic elastomer actuators, as well as the drive cylinders that supply fluid energy. Next, using this model and trajectory-optimization techniques we find locally-optimal open-loop policies that allow the system to perform dynamic maneuvers we call grabs. In 37 experimental trials with a physical prototype, we successfully perform a grab 92% of the time. Last, we introduce the idea of static bracing for a soft elastomer arm and discuss how forming environmental braces might be an effective manipulation strategy for this class of robots. By studying such an extreme example of a soft robot, we can begin to solve hard problems inhibiting the mainstream use of soft machines.


2017 ◽  
Vol 2017 ◽  
pp. 1-12
Author(s):  
Eva Anglada ◽  
Laura Martinez-Jimenez ◽  
Iñaki Garmendia

The correlation of the thermal mathematical models (TMMs) of spacecrafts with the results of the thermal test is a demanding task in terms of time and effort. Theoretically, it can be automatized by means of optimization techniques, although this is a challenging task. Previous studies have shown the ability of genetic algorithms to perform this task in several cases, although some limitations have been detected. In addition, gradient-based methods, although also presenting some limitations, have provided good solutions in other technical fields. For this reason, the performance of genetic algorithms and gradient-based methods in the correlation of TMMs is discussed in this paper to compare the pros and cons of them. The case of study used in the comparison is a real space instrument flown aboard the International Space Station.


Author(s):  
Qian Wang ◽  
Lucas Schmotzer ◽  
Yongwook Kim

<p>Structural designs of complex buildings and infrastructures have long been based on engineering experience and a trial-and-error approach. The structural performance is checked each time when a design is determined. An alternative strategy based on numerical optimization techniques can provide engineers an effective and efficient design approach. To achieve an optimal design, a finite element (FE) program is employed to calculate structural responses including forces and deformations. A gradient-based or gradient-free optimization method can be integrated with the FE program to guide the design iterations, until certain convergence criteria are met. Due to the iterative nature of the numerical optimization, a user programming is required to repeatedly access and modify input data and to collect output data of the FE program. In this study, an approximation method was developed so that the structural responses could be expressed as approximate functions, and that the accuracy of the functions could be adaptively improved. In the method, the FE program was not required to be directly looped in the optimization iterations. As a practical illustrative example, a 3D reinforced concrete building structure was optimized. The proposed method worked very well and optimal designs were found to reduce the torsional responses of the building.</p>


2020 ◽  
Vol 17 (6) ◽  
pp. 172988142096907
Author(s):  
Naifeng Wen ◽  
Rubo Zhang ◽  
Guanqun Liu ◽  
Junwei Wu ◽  
Xingru Qu

The study is concerned with the problem of online planning low-cost cooperative paths; those are energy-efficient, easy-to-execute, and low collision probability for unmanned surface vehicles (USVs) based on the artificial vector field and environmental heuristics. First, we propose an artificial vector field method by following the global optimally path and the current to maximize the known environmental information. Then, to improve the optimal rapidly exploring random tree (RRT*) based planner by the environment heuristics, a Gaussian sampling scheme is adopted to seek for the likely samples that locate near obstacles. Meanwhile, a multisampling strategy is proposed to choose low-cost path tree extensions locally. The vector field guidance, the Gaussian sampling scheme, and the multisampling strategy are used to improve the efficiency of RRT* to obtain a low-cost path for the virtual leader of USVs. To promote the accuracy of collision detection during the execution process of RRT*, an ellipse function-based bounding box for USVs is proposed with the consideration of the current. Finally, an information consensus scheme is employed to quickly calculate cooperative paths for a fleet of USVs guided by the virtual leader. Simulation results show that our online cooperative path planning method is performed well in the practical marine environment.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 719
Author(s):  
Lina Lu ◽  
Wanpeng Zhang ◽  
Xueqiang Gu ◽  
Xiang Ji ◽  
Jing Chen

The Monte Carlo Tree Search (MCTS) has demonstrated excellent performance in solving many planning problems. However, the state space and the branching factors are huge, and the planning horizon is long in many practical applications, especially in the adversarial environment. It is computationally expensive to cover a sufficient number of rewarded states that are far away from the root in the flat non-hierarchical MCTS. Therefore, the flat non-hierarchical MCTS is inefficient for dealing with planning problems with a long planning horizon, huge state space, and branching factors. In this work, we propose a novel hierarchical MCTS-based online planning method named the HMCTS-OP to tackle this issue. The HMCTS-OP integrates the MAXQ-based task hierarchies and the hierarchical MCTS algorithms into the online planning framework. Specifically, the MAXQ-based task hierarchies reduce the search space and guide the search process. Therefore, the computational complexity is significantly reduced. Moreover, the reduction in the computational complexity enables the MCTS to perform a deeper search to find better action in a limited time. We evaluate the performance of the HMCTS-OP in the domain of online planning in the asymmetric adversarial environment. The experiment results show that the HMCTS-OP outperforms other online planning methods in this domain.


2019 ◽  
Vol 37 (4-6) ◽  
pp. 377-433
Author(s):  
Tatenda Nyazika ◽  
Maude Jimenez ◽  
Fabienne Samyn ◽  
Serge Bourbigot

Over the past years, pyrolysis models have moved from thermal models to comprehensive models with great flexibility including multi-step decomposition reactions. However, the downside is the need for a complete set of input data such as the material properties and the parameters related to the decomposition kinetics. Some of the parameters are not directly measurable or are difficult to determine and they carry a certain degree of uncertainty at high temperatures especially for materials that can melt, shrink, or swell. One can obtain input parameters by searching through the literature; however, certain materials may have the same nomenclature but the material properties may vary depending on the manufacturer, thereby inducing uncertainties in the model. Modelers have resorted to the use of optimization techniques such as gradient-based and direct search methods to estimate input parameters from experimental bench-scale data. As an integral part of the model, a sensitivity study allows to identify the role of each input parameter on the outputs. This work presents an overview of pyrolysis modeling, sensitivity analysis, and optimization techniques used to predict the fire behavior of combustible solids when exposed to an external heat flux.


Sign in / Sign up

Export Citation Format

Share Document