scholarly journals Automatic correction of the initial rotation angle error improves 3D reconstruction in endoscopic airway optical coherence tomography

2021 ◽  
Author(s):  
Li Qi ◽  
Zhijian Zhuang ◽  
Shuangyang Zhang ◽  
Shixian Huang ◽  
qianjing feng ◽  
...  
2019 ◽  
Vol 21 (4) ◽  
pp. 468-468
Author(s):  
Deming Liang ◽  
Patrik Arnold ◽  
Laurent Roten ◽  
Adrian Zurbuchen ◽  
Andreas Haeberlin

2017 ◽  
Vol 11 (5) ◽  
pp. 787-794
Author(s):  
Shin Usuki ◽  
Katsuaki Tamaki ◽  
Kenjiro T. Miura ◽  
◽  

The objective of this research was to develop a three-dimensional (3D) reconstruction system based on a time-domain optical coherence tomography (OCT) microscope. One of the critical drawbacks of OCT microscopes is that their axial measurement ranges are typically limited by their depths of field (DOFs), which are determined by the numerical apertures of their objective lenses and the central wavelengths of their light sources. If a low-coherence interference fringe is far outside the DOF, the measurement accuracy inevitably decreases, regardless of how well-adjusted the reference mirror is. To address this issue and improve the axial measurement range of the OCT microscope in this study, an object-scanning measurement scheme involving a Linnik interferometer was developed. To calibrate the system in the proposed technique, image post-processing is performed for a well-conditioned state to ensure that a low-coherence interference fringe is generated within the DOF, enabling 3D objects with high-aspect-ratio structures to be scanned along the axial direction. During object-scanning, this state is always monitored and is corrected by adjusting the reference mirror. By using this method, the axial measurement range can be improved up to the working distance (WD) of the objective lens without compromising the measurement accuracy. The WD is typically longer than 10 mm, while the DOF of the microscope is around 0.01 mm in general, although it varies depending on the imaging system. In this report, the experimental setup of a 3D reconstruction system is presented, a series of experimental verifications is described, and the results are discussed. The axial measurement range was improved to at least 35 times that of a typical OCT microscope with identical imaging optics.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Wu ◽  
Saurabhi Samant ◽  
Gijs de Zwart ◽  
Shijia Zhao ◽  
Behram Khan ◽  
...  

Abstract The three-dimensional (3D) representation of the bifurcation anatomy and disease burden is essential for better understanding of the anatomical complexity of bifurcation disease and planning of stenting strategies. We propose a novel methodology for 3D reconstruction of coronary artery bifurcations based on the integration of angiography, which provides the backbone of the bifurcation, with optical coherence tomography (OCT), which provides the vessel shape. Our methodology introduces several technical novelties to tackle the OCT frame misalignment, correct positioning of the OCT frames at the carina, lumen surface reconstruction, and merging of bifurcation lumens. The accuracy and reproducibility of the methodology were tested in n = 5 patient-specific silicone bifurcations compared to contrast-enhanced micro-computed tomography (µCT), which was used as reference. The feasibility and time-efficiency of the method were explored in n = 7 diseased patient bifurcations of varying anatomical complexity. The OCT-based reconstructed bifurcation models were found to have remarkably high agreement compared to the µCT reference models, yielding r2 values between 0.91 and 0.98 for the normalized lumen areas, and mean differences of 0.005 for lumen shape and 0.004 degrees for bifurcation angles. Likewise, the reproducibility of our methodology was remarkably high. Our methodology successfully reconstructed all the patient bifurcations yielding favorable processing times (average lumen reconstruction time < 60 min). Overall, our method is an easily applicable, time-efficient, and user-friendly tool that allows accurate and reproducible 3D reconstruction of coronary bifurcations. Our technique can be used in the clinical setting to provide information about the bifurcation anatomy and plaque burden, thereby enabling planning, education, and decision making on bifurcation stenting.


Sign in / Sign up

Export Citation Format

Share Document