scholarly journals Plane wave analysis of coherent holographic image reconstruction by phase transfer (CHIRPT)

2015 ◽  
Vol 32 (11) ◽  
pp. 2156 ◽  
Author(s):  
Jeffrey J. Field ◽  
David G. Winters ◽  
Randy A. Bartels
2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Yair Rivenson ◽  
Yichen Wu ◽  
Aydogan Ozcan

Abstract Recent advances in deep learning have given rise to a new paradigm of holographic image reconstruction and phase recovery techniques with real-time performance. Through data-driven approaches, these emerging techniques have overcome some of the challenges associated with existing holographic image reconstruction methods while also minimizing the hardware requirements of holography. These recent advances open up a myriad of new opportunities for the use of coherent imaging systems in biomedical and engineering research and related applications.


2020 ◽  
Vol 221 (3) ◽  
pp. 1765-1776 ◽  
Author(s):  
Jia Wei ◽  
Li-Yun Fu ◽  
Zhi-Wei Wang ◽  
Jing Ba ◽  
José M Carcione

SUMMARY The Lord–Shulman thermoelasticity theory combined with Biot equations of poroelasticity, describes wave dissipation due to fluid and heat flow. This theory avoids an unphysical behaviour of the thermoelastic waves present in the classical theory based on a parabolic heat equation, that is infinite velocity. A plane-wave analysis predicts four propagation modes: the classical P and S waves and two slow waves, namely, the Biot and thermal modes. We obtain the frequency-domain Green's function in homogeneous media as the displacements-temperature solution of the thermo-poroelasticity equations. The numerical examples validate the presence of the wave modes predicted by the plane-wave analysis. The S wave is not affected by heat diffusion, whereas the P wave shows an anelastic behaviour, and the slow modes present a diffusive behaviour depending on the viscosity, frequency and thermoelasticity properties. In heterogeneous media, the P wave undergoes mesoscopic attenuation through energy conversion to the slow modes. The Green's function is useful to study the physics in thermoelastic media and test numerical algorithms.


Author(s):  
Ryo Higashida ◽  
Nobuhiko Funabashi ◽  
Ken-ichi Aoshima ◽  
Masato Miura ◽  
Kenji Machida

Sign in / Sign up

Export Citation Format

Share Document