Inverse scattering and imaging of compensated compact ranges by plane wave analysis

Author(s):  
E. Gulten ◽  
J. Migl ◽  
T. Eibert
2007 ◽  
Author(s):  
Κωνσταντίνος Αναγνωστόπουλος

The scope of this doctoral thesis is, first, to develop an analytical, in principle, method for the solution of the two-dimensional scattering problem of time-harmonic elastic plane waves by a homogeneous orthotropic scatterer, second, to establish the complete theoretical framework, which is necessary for the application of the Linear Sampling Method (LSM) to the problem of reconstructing the support of twodimensional elastic anisotropic inclusions embedded in isotropic media and, third, to derive an extension of the Factorization Method (FM) to the inverse elastic scattering problem by penetrable isotropic bodies for time-harmonic plane wave incidence. Aconcise description of the contents of the thesis is outlined below. Chapter one contains a detailed bibliographical search, which is related to the analytical and numerical methods (with emphasis on the former) usually employed for the solution of the direct scattering problem by anisotropic elastic bodies as well as to those inverse scattering techniques, which are usually referred to as sampling and probe methods and, in particular, the LSM and the FM. Chapter two commences with a brief discussion of some fundamental results from the linearized theory of dynamic elasticity. The problem of a rigorous analysis of the elasticity equation governing the elastic behaviour of an orthotropic material in two dimensions is then addressed. This analysis, which is based on a suitable diagonalization applied to the underlying differential system and a plane wave expansion of the sought field, results in a Fourier series expansion for the displacement field describing the elastic deformations of the orthotropic medium and is complemented by the results of appendix A. A mathematical model for the solution of the associated transmission scattering problem, taking advantage of the aforementioned expansion, is also settled and analyzed. The details of its numerical treatment can be found in appendix B. Finally, numerical results for several inclusion geometries and a system thereof with material properties characterized by the cubic symmetryclass -a special case of the orthotropic class of symmetry- are presented. In chapter three, the LSM is extended to the case of a two-dimensional homogeneous anisotropic inclusion embedded in an isotropic background medium. The concepts of the elastic Herglotz function, the elastic far-field operator and the corresponding far-field equation, on which the formulation of the LSM heavily relies, are first introduced. Then, the proposed inverse scattering scheme is introduced and discussed in detail. By means of an appropriate operator decomposition of the far-field operator,the main theorem of the method, concerning the characterization of the behaviour of an approximate solution to the far-field equation at the boundary of the scatterer, is proved. In the end of the third chapter, the performance of the LSM is examined by applying it to a set of different geometric configurations of the elastic inclusion, filled with a cubic anisotropic material. An investigation of the effect of the various parameters entering the problem, such as the scatterer’s degree of anisotropy, the polarization of the elastic point source located at the sampling point and the noise level in the synthetic far-field data, on the reconstructed geometric profiles’ quality,is carried out. In the fourth chapter, the FM is elaborated for the shape reconstruction of a penetrable isotropic elastic body from the knowledge of the far-field pattern of the scattered fields for plane incident waves. The theoretical analysis is conducted in three dimensions and focuses on deriving a factorization of the far-field operator, which is the cornerstone for the applicability of the particular inversion scheme, and investigating thorougly the properties of the involved operators. This investigation gave birth to a number of interesting by-products and one of them, namely, a regularity estimate for the solution of a particular form of the corresponding interior transmission problem, is the subject matter of appendix C. By means of the proposed factorization, a series of theorems, which finally lead to an explicit characterization of the scattering obstacle, is then proved. In the end of the chapter, the performance of the investigated inverse scattering technique is demonstrated by applying it to specific two-dimensional elastic scatterer reconstruction problems involving different scatterer configurations and various choices for their constitutive parameters. The effect of using different levels of additive random noise in the forward synthetic data and combining results obtained for different polarizations of the elastic point source located at the sampling point, on the quality of the reconstructed profiles, is also examined. Finally, chapter five draws the conclusions that flow from the foregoing chapters and discusses the contribution of this doctoral thesis. A brief discussion about possible future studies is also included.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. V255-V269 ◽  
Author(s):  
Jian Sun ◽  
Kristopher A. Innanen

Internal multiple prediction and removal is a critical component of seismic data processing prior to imaging, inversion, and quantitative interpretation. Inverse scattering series methods predict multiples without identification of generators, and without requiring a velocity model. Land environments present several challenges to the inverse scattering series prediction process. This is particularly true for algorithm versions that explicitly account for elastic conversions and incorporate multicomponent data. The theory for elastic reference medium inverse scattering series internal multiple prediction was introduced several decades ago, but no numerical analysis or practical discussion of how to prepare data for it currently exists. We have focused our efforts on addressing this gap. We extend the theory from 2D to 3D, analyze the properties of the input data required by the existing algorithm, and, motivated by earlier research results, reformulate the algorithm in the plane-wave domain. The success of the prediction process relies on the ordering of events in either pseudodepth or vertical traveltime being the same as the ordering of reflecting interfaces in true depth. In elastic-multicomponent cases, it is difficult to ensure that this holds true because the events to be combined may have undergone multiple conversions as they were created. Several variants of the elastic-multicomponent prediction algorithm are introduced and examined for their tendency to violate ordering requirements (and create artifacts). A plane-wave domain prediction, based on elastic data that have been prepared (1) using variable, “best-fit” velocities as reference velocities, and (2) with an analytically determined vertical traveltime stretching formula, is identified as being optimal in the sense of generating artifact-free predictions with relatively small values of the search parameter [Formula: see text], while remaining fully data driven. These analyses are confirmed with simulated data from a layered model; these are the first numerical examples of elastic-multicomponent inverse scattering series internal multiple prediction.


2020 ◽  
Vol 221 (3) ◽  
pp. 1765-1776 ◽  
Author(s):  
Jia Wei ◽  
Li-Yun Fu ◽  
Zhi-Wei Wang ◽  
Jing Ba ◽  
José M Carcione

SUMMARY The Lord–Shulman thermoelasticity theory combined with Biot equations of poroelasticity, describes wave dissipation due to fluid and heat flow. This theory avoids an unphysical behaviour of the thermoelastic waves present in the classical theory based on a parabolic heat equation, that is infinite velocity. A plane-wave analysis predicts four propagation modes: the classical P and S waves and two slow waves, namely, the Biot and thermal modes. We obtain the frequency-domain Green's function in homogeneous media as the displacements-temperature solution of the thermo-poroelasticity equations. The numerical examples validate the presence of the wave modes predicted by the plane-wave analysis. The S wave is not affected by heat diffusion, whereas the P wave shows an anelastic behaviour, and the slow modes present a diffusive behaviour depending on the viscosity, frequency and thermoelasticity properties. In heterogeneous media, the P wave undergoes mesoscopic attenuation through energy conversion to the slow modes. The Green's function is useful to study the physics in thermoelastic media and test numerical algorithms.


Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 1141-1148 ◽  
Author(s):  
José M. Carcione ◽  
Fabio Cavallini

We derive an analytical solution for electromagnetic waves propagating in a 3‐D lossy orthotropic medium for which the electric permittivity tensor is proportional to the magnetic permeability tensor. The solution is obtained through a change of coordinates that transforms the spatial differential operator into a pure Laplace operator and the differential equations for the electric and magnetic field components into pure Helmholtz equations. A plane‐wave analysis gives the expression of the slowness and attenuation surfaces as a function of frequency and propagation direction. The transverse electric and transverse magnetic surfaces degenerate to one repeated sheet so that, in any direction, the two differently polarized plane waves have the same slowness. A computer experiment with realistic geophysical parameters has shown that the anisotropic propagation and dissipation properties emerging from plane‐wave analysis agree with the different time histories of the magnetic field computed at a number of representative receiver locations.


Sign in / Sign up

Export Citation Format

Share Document