scholarly journals Optical refocusing three-dimensional wide-field fluorescence lifetime imaging microscopy

2012 ◽  
Vol 20 (2) ◽  
pp. 960 ◽  
Author(s):  
Qiang Wu ◽  
Shangyu Guo ◽  
Yinxing Ma ◽  
Feng Gao ◽  
Chengliang Yang ◽  
...  
2017 ◽  
Vol 8 (3) ◽  
pp. 1455 ◽  
Author(s):  
Taylor Hinsdale ◽  
Cory Olsovsky ◽  
Jose J. Rico-Jimenez ◽  
Kristen C. Maitland ◽  
Javier A. Jo ◽  
...  

2020 ◽  
Author(s):  
V. Zickus ◽  
M.-L. Wu ◽  
K. Morimoto ◽  
V. Kapitany ◽  
A. Fatima ◽  
...  

Fluorescence lifetime imaging microscopy (FLIM) is a key technology that provides direct insight into cell metabolism, cell dynamics and protein activity. However, determining the lifetimes of different fluorescent proteins requires the detection of a relatively large number of photons, hence slowing down total acquisition times. Moreover, there are many cases, for example in studies of cell collectives, where wide-field imaging is desired. We report scan-less wide-field FLIM based on a 0.5 Megapixel resolution, time-gated Single Photon Avalanche Diode (SPAD) camera, with acquisition rates up to 1 Hz. Fluorescence lifetime estimation is performed via a pre-trained artificial neural network with 1000-fold improvement in processing times compared to standard least squares fitting techniques. We utilised our system to image HT1080 – human fibrosarcoma cell line as well as Convallaria. The results show promise for real-time FLIM and a viable route towards multi-megapixel fluorescence lifetime images, with a proof-of-principle mosaic image shown with 3.6 megapixels.


Sign in / Sign up

Export Citation Format

Share Document