scholarly journals Brillouin optical time-domain analyzer based on orthogonally-polarized four-tone probe wave

2016 ◽  
Vol 24 (18) ◽  
pp. 21046 ◽  
Author(s):  
Xiaobin Hong ◽  
Wenqiao Lin ◽  
Zhisheng Yang ◽  
Sheng Wang ◽  
Jian Wu
2011 ◽  
Vol 11 (4) ◽  
pp. 1067-1068 ◽  
Author(s):  
Ander Zornoza ◽  
Aldo Minardo ◽  
Romeo Bernini ◽  
Alayn Loayssa ◽  
Luigi Zeni

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5049
Author(s):  
Agnese Coscetta ◽  
Ester Catalano ◽  
Enis Cerri ◽  
Ricardo Oliveira ◽  
Lucia Bilro ◽  
...  

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.


2021 ◽  
Vol 11 (1) ◽  
pp. 1-30
Author(s):  
Yunjiang Rao ◽  
Zinan Wang ◽  
Huijuan Wu ◽  
Zengling Ran ◽  
Bing Han

AbstractPhase-sensitive optical time domain reflectometry (Ф-OTDR) is an effective way to detect vibrations and acoustic waves with high sensitivity, by interrogating coherent Rayleigh backscattering light in sensing fiber. In particular, fiber-optic distributed acoustic sensing (DAS) based on the Ф-OTDR with phase demodulation has been extensively studied and widely used in intrusion detection, borehole seismic acquisition, structure health monitoring, etc., in recent years, with superior advantages such as long sensing range, fast response speed, wide sensing bandwidth, low operation cost and long service lifetime. Significant advances in research and development (R&D) of Ф-OTDR have been made since 2014. In this review, we present a historical review of Ф-OTDR and then summarize the recent progress of Ф-OTDR in the Fiber Optics Research Center (FORC) at University of Electronic Science and Technology of China (UESTC), which is the first group to carry out R&D of Ф-OTDR and invent ultra-sensitive DAS (uDAS) seismometer in China which is elected as one of the ten most significant technology advances of PetroChina in 2019. It can be seen that the Ф-OTDR/DAS technology is currently under its rapid development stage and would reach its climax in the next 5 years.


2021 ◽  
pp. 1-1
Author(s):  
Xia Gao ◽  
Xiaobin Hong ◽  
Sheng Wang ◽  
Xizi Sun ◽  
Liangming Xiong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document