polymer optical fibers
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 64)

H-INDEX

27
(FIVE YEARS 4)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 273
Author(s):  
Jie Jiang ◽  
Nan Zhang ◽  
Rui Min ◽  
Xin Cheng ◽  
Hang Qu ◽  
...  

This review discusses recent achievements on grating fabrications in polymer optical fibers doped with photosensitive materials. First, different photosensitive dopants in polymer optical fibers (POFs) are summarized, and their refractive index change mechanisms are discussed. Then, several different doping methods to fabricate the photosensitive POFs are presented. Following that, the principles of gratings, including standard fiber Bragg gratings (FBGs), tilted fiber Bragg gratings (TFBGs), chirped fiber Bragg gratings (CFBGs), phase-shifted fiber Bragg gratings (PSFBGs), and long period fiber gratings (LPFGs), are reported. Finally, fabrications of different gratings based on photosensitive POFs in the last 20 years are reported. We present our article clearly and logically, so that it will be helpful for researchers to explore a broad perspective on this proposed topic. Overall, the content provides a comprehensive overview of photosensitive POF fabrications and grating inscriptions in photosensitive POFs, including previous breakthroughs and recent advancements.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yi Cao ◽  
Suwan Pan ◽  
Mengying Yan ◽  
Chongyang Sun ◽  
Jianyu Huang ◽  
...  

Abstract Background Although electrical stimulation of the peripheral and central nervous systems has attracted much attention owing to its potential therapeutic effects on neuropsychiatric diseases, its non-cell-type-specific activation characteristics may hinder its wide clinical application. Unlike electrical methodologies, optogenetics has more recently been applied as a cell-specific approach for precise modulation of neural functions in vivo, for instance on the vagus nerve. The commonly used implantable optical waveguides are silica optical fibers, which for brain optogenetic stimulation (BOS) are usually fixed on the skull bone. However, due to the huge mismatch of mechanical properties between the stiff optical implants and deformable vagal tissues, vagus nerve optogenetic stimulation (VNOS) in free-behaving animals continues to be a great challenge. Results To resolve this issue, we developed a simplified method for the fabrication of flexible and stretchable polymer optical fibers (POFs), which show significantly improved characteristics for in vivo optogenetic applications, specifically a low Young’s modulus, high stretchability, improved biocompatibility, and long-term stability. We implanted the POFs into the primary motor cortex of C57 mice after the expression of CaMKIIα-ChR2-mCherry detected frequency-dependent neuronal activity and the behavioral changes during light delivery. The viability of POFs as implantable waveguides for VNOS was verified by the increased firing rate of the fast-spiking GABAergic interneurons recorded in the left vagus nerve of VGAT-ChR2 transgenic mice. Furthermore, VNOS was carried out in free-moving rodents via chronically implanted POFs, and an inhibitory influence on the cardiac system and an anxiolytic effect on behaviors was shown. Conclusion Our results demonstrate the feasibility and advantages of the use of POFs in chronic optogenetic modulations in both of the central and peripheral nervous systems, providing new information for the development of novel therapeutic strategies for the treatment of neuropsychiatric disorders.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3397
Author(s):  
María Ángeles Losada ◽  
María Mazo ◽  
Alicia López ◽  
Candela Muzás ◽  
Javier Mateo

Large-core polymer optical fiber (POF) links have limitations in capacity and reach due to the fibers’ high modal dispersion and attenuation. Most of these links use red laser diodes, even though the attenuation spectrum of poly(methyl methacrylate) (PMMA), the basic polymer used to manufacture these fibers, has a lower minimum in the green region. Therefore, we set out to explore the potential use of green light in transmission systems, comparing the performances of three step-index polymer optical fibers (SI-POFs) with different numerical apertures. We obtained measurements of intensity distribution, frequency response and bit error rate (BER), as functions of fiber length. We have also compared the fibers’ frequency responses with red and green light for a few selected lengths. Our results confirm that SI-POFs attenuate less in response to green light, which can increase their length. This advantage is partially counterbalanced by a slightly higher dispersion that limits the capacity of the high-aperture fibers, particularly at relatively short lengths. Our conclusions are critical to understanding SI-POF behavior and to designing thorough SI-POF models that can aid the design of POF-based links for different scenarios.


2021 ◽  
Vol 66 ◽  
pp. 102638
Author(s):  
Andreas Evertz ◽  
Daniel Schrein ◽  
Ejvind Olsen ◽  
Gerd-Albert Hoffmann ◽  
Ludger Overmeyer

Textiles ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 337-360
Author(s):  
Jan Kallweit ◽  
Mark Pätzel ◽  
Franz Pursche ◽  
Junes Jabban ◽  
Mohamad Morobeid ◽  
...  

An overview of the most important methods for producing side-emitting polymer optical fibers is given. Based on a systematic literature and patent search, the methods that are applied in practice and explored in research are identified. The fabrication methods are classified into four groups according to the physical phenomenon that hinders total internal reflection: bulk scattering, bending, surface perforations and luminescence. Subdivisions are made regarding the actual processing steps. The production methods are described in detail and discussed with respect to their customizability and applications.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5049
Author(s):  
Agnese Coscetta ◽  
Ester Catalano ◽  
Enis Cerri ◽  
Ricardo Oliveira ◽  
Lucia Bilro ◽  
...  

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 652
Author(s):  
Marco Cinquino ◽  
Carmela Tania Prontera ◽  
Marco Pugliese ◽  
Roberto Giannuzzi ◽  
Daniela Taurino ◽  
...  

E-textiles represent an emerging technology aiming toward the development of fabric with augmented functionalities, enabling the integration of displays, sensors, and other electronic components into textiles. Healthcare, protective clothing, fashion, and sports are a few examples application areas of e-textiles. Light-emitting textiles can have different applications: sensing, fashion, visual communication, light therapy, etc. Light emission can be integrated with textiles in different ways: fabricating light-emitting fibers and planar light-emitting textiles or employing side-emitting polymer optical fibers (POFs) coupled with light-emitting diodes (LEDs). Different kinds of technology have been investigated: alternating current electroluminescent devices (ACELs), inorganic and organic LEDs, and light-emitting electrochemical cells (LECs). The different device working principles and architectures are discussed in this review, highlighting the most relevant aspects and the possible approaches for their integration with textiles. Regarding POFs, the methodology to obtain side emissions and the critical aspects for their integration into textiles are discussed in this review. The main applications of light-emitting fabrics are illustrated, demonstrating that LEDs, alone or coupled with POFs, represent the most robust technology. On the other hand, OLEDs (Organic LEDs) are very promising for the future of light-emitting fabrics, but some issues still need to be addressed.


2021 ◽  
Vol 25 (3) ◽  
pp. 100912
Author(s):  
Konrad Jakubowski ◽  
Chieh-Szu Huang ◽  
Luciano F. Boesel ◽  
Rudolf Hufenus ◽  
Manfred Heuberger

Sign in / Sign up

Export Citation Format

Share Document