scholarly journals Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles

2018 ◽  
Vol 26 (10) ◽  
pp. 13543 ◽  
Author(s):  
Lucas A. Shaw ◽  
Samira Chizari ◽  
Maxim Shusteff ◽  
Hamed Naghsh-Nilchi ◽  
Dino Di Carlo ◽  
...  
2018 ◽  
Vol 26 (11) ◽  
pp. 14718 ◽  
Author(s):  
Lucas A. Shaw ◽  
Samira Chizari ◽  
Maxim Shusteff ◽  
Hamed Naghsh-Nilchi ◽  
Dino Di Carlo ◽  
...  

2014 ◽  
Vol 8 (5) ◽  
pp. L76-L80 ◽  
Author(s):  
Andreas Eckstein ◽  
Guillaume Boucher ◽  
Aristide Lemaître ◽  
Pascal Filloux ◽  
Ivan Favero ◽  
...  

2007 ◽  
Vol 93 (7) ◽  
pp. 2519-2529 ◽  
Author(s):  
Raluca Niesner ◽  
Volker Andresen ◽  
Jens Neumann ◽  
Heinrich Spiecker ◽  
Matthias Gunzer

2013 ◽  
Vol 9 (6) ◽  
pp. 2579-2593 ◽  
Author(s):  
J. Chappellaz ◽  
C. Stowasser ◽  
T. Blunier ◽  
D. Baslev-Clausen ◽  
E. J. Brook ◽  
...  

Abstract. The Greenland NEEM (North Greenland Eemian Ice Drilling) operation in 2010 provided the first opportunity to combine trace-gas measurements by laser spectroscopic instruments and continuous-flow analysis along a freshly drilled ice core in a field-based setting. We present the resulting atmospheric methane (CH4) record covering the time period from 107.7 to 9.5 ka b2k (thousand years before 2000 AD). Companion discrete CH4 measurements are required to transfer the laser spectroscopic data from a relative to an absolute scale. However, even on a relative scale, the high-resolution CH4 data set significantly improves our knowledge of past atmospheric methane concentration changes. New significant sub-millennial-scale features appear during interstadials and stadials, generally associated with similar changes in water isotopic ratios of the ice, a proxy for local temperature. In addition to the midpoint of Dansgaard–Oeschger (D/O) CH4 transitions usually used for cross-dating, sharp definition of the start and end of these events brings precise depth markers (with ±20 cm uncertainty) for further cross-dating with other palaeo- or ice core records, e.g. speleothems. The method also provides an estimate of CH4 rates of change. The onsets of D/O events in the methane signal show a more rapid rate of change than their endings. The rate of CH4 increase associated with the onsets of D/O events progressively declines from 1.7 to 0.6 ppbv yr−1 in the course of marine isotope stage 3. The largest observed rate of increase takes place at the onset of D/O event #21 and reaches 2.5 ppbv yr−1.


2018 ◽  
Vol 11 (8) ◽  
pp. 4725-4736 ◽  
Author(s):  
Elizabeth D. Keller ◽  
W. Troy Baisden ◽  
Nancy A. N. Bertler ◽  
B. Daniel Emanuelsson ◽  
Silvia Canessa ◽  
...  

Abstract. We describe a systematic approach to the calibration and uncertainty estimation of a high-resolution continuous flow analysis (CFA) water isotope (δ2H, δ18O) record from the Roosevelt Island Climate Evolution (RICE) Antarctic ice core. Our method establishes robust uncertainty estimates for CFA δ2H and δ18O measurements, comparable to those reported for discrete sample δ2H and δ18O analysis. Data were calibrated using a time-weighted two-point linear calibration with two standards measured both before and after continuously melting 3 or 4 m of ice core. The error at each data point was calculated as the quadrature sum of three factors: Allan variance error, scatter over our averaging interval (error of the variance) and calibration error (error of the mean). Final mean total uncertainty for the entire record is δ2H=0.74 ‰ and δ18O=0.21 ‰. Uncertainties vary through the data set and were exacerbated by a range of factors, which typically could not be isolated due to the requirements of the multi-instrument CFA campaign. These factors likely occurred in combination and included ice quality, ice breaks, upstream equipment failure, contamination with drill fluid and leaks or valve degradation. We demonstrate that our methodology for documenting uncertainty was effective across periods of uneven system performance and delivered a significant achievement in the precision of high-resolution CFA water isotope measurements.


1981 ◽  
Vol 23 (12) ◽  
pp. 6806-6809 ◽  
Author(s):  
D. G. Seiler ◽  
M. W. Goodwin ◽  
M. H. Weiler

2013 ◽  
Vol 38 (16) ◽  
pp. 3186 ◽  
Author(s):  
Chien-Ming Wu ◽  
Tze-Wei Liu ◽  
Ming-Hsuan Wu ◽  
Ray-Kuang Lee ◽  
Wang-Yau Cheng

Sign in / Sign up

Export Citation Format

Share Document