scholarly journals Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime

2018 ◽  
Vol 26 (26) ◽  
pp. 33918 ◽  
Author(s):  
Xin Luo ◽  
Zhimin Liu ◽  
Ziqiang Cheng ◽  
Jianping Liu ◽  
Qi Lin ◽  
...  
2011 ◽  
Vol 1322 ◽  
Author(s):  
W. Wang ◽  
S. Wu ◽  
Y.L. Lu ◽  
Kitt Reinhardt ◽  
S.C. Chen

ABSTRACTCurrently, the performances of thin film solar cells are limited by poor light absorption and carrier collection. In this research, large, broadband, and polarization-insensitive light absorption enhancement was realized via incorporation of different periodic nanopetterns. By studying the enhancement effect brought by different materials, dimensions, coverage, and dielectric environments of the metal nanopatterns, we analyzed the absorption enhancement mechanisms as well as optimization criteria for our designs. A test for totaling the absorption over the solar spectrum shows an up to ∼30% broadband absorption enhancement when comparing to conventional thin film cells.


2013 ◽  
Vol 1493 ◽  
pp. 323-328
Author(s):  
Patrick W. Flanigan ◽  
Aminy E. Ostfeld ◽  
Zhen Ye ◽  
Natalie G. Serrino ◽  
Domenico Pacifici

ABSTRACTThis report will demonstrate broadband, wide-angle, and polarization-insensitive absorption enhancement in ultra-thin films resting on metal substrates that have been etched with arrays of shallow sub-wavelength cylindrical holes. Absorption enhancement will be studied as a function of array geometry, with particular emphasis given to quasiperiodic arrays (a class of deterministic aperiodic arrays that were originally developed to tessellate 2-D planes with regular polygons). Through simulations and experimental data, it was found that absorption enhancement is heavily dependent on the rotational symmetry of the pattern of holes, as well as the inter-hole distance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2709
Author(s):  
Jiajia Qian ◽  
Jun Zhou ◽  
Zheng Zhu ◽  
Zhenzhen Ge ◽  
Shuting Wu ◽  
...  

A polarization-insensitive broadband terahertz absorber based on single-layer graphene metasurface has been designed and simulated, in which the graphene metasurface is composed of isolated circular patches. After simulation and optimization, the absorption bandwidth of this absorber with more than 90% absorptance is up to 2 THz. The simulation results demonstrate that the broadband absorption can be achieved by combining the localized surface plasmon (LSP) resonances on the graphene patches and the resonances caused by the coupling between them. The absorption bandwidth can be changed by changing the chemical potential of graphene and the structural parameters. Due to the symmetrical configuration, the proposed absorber is completely insensitive to polarization and have the characteristics of wide angle oblique incidence that they can achieve broadband absorption with 70% absorptance in the range of incident angle from 0° to 50° for both TE and TM polarized waves. The flexible and simple design, polarization insensitive, wide-angle incident, broadband and high absorption properties make it possible for our proposed absorber to have promising applications in terahertz detection, imaging and cloaking objects.


Author(s):  
Yadgar I. Abdulkarim ◽  
Halgurd N. Awl ◽  
Fatih Ozkan Alkurt ◽  
Fahmi F. Muhammadsharif ◽  
Salah Raza Saeed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document